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ABSTRACT

Extending existing research in Explainable Atificial
Intelligence(XAl), this paper presents a redexplanation
technique for image classifierdased on the heatmap
paradigm it combinesdatafrom multiple granularities to
representdifferent scalefeaturesin a single visualisation.
Occlusionis usedto determine the importance of different
areas tdhe classification outcomegllowing it tobe applied

to any opagudox system. Importance data is processed
using a tree tdorm a hierarchy between multiple scales,
and dynamically determine the most egriate scale for
each area of the heatmap. This visualisation evaduaed
through a user study, extending the work of Algaraawi et al.
[3], comparing its performance with LRP heatmaps and no Figure 1: A multi -scale occlusion heatmap produced for an
heatmaps. The user study involved forward prediction of image of a cat from thePASCAL dataset[17]

classifier outcomes and identifying features for example 1 |\NTRODUCTION

images. Overall, this new visualisation did not provide ap\achine learningML) techniquesare being increasingly
significant improvement in prediction accuracy (versus noysed to solvenew problems and enhance rtificial
heatmaps) but did significantly increase the number ofjnte|ligence (Al)systemd25]. FurthermoreAl systems are
features mentioned (versus naatmaps). It performed now commonplace in enterprise with only 15% of
comparably to LRP heatmaps, indicating that it may havegrganisationsin 2020 notusing Al at all [47]. A key
the potential to be used in reabrld applications. Slight
differences in the features conveyed between these neWom provided datameaning the exact behaviodioes not
visualisations and LRP heatmaps indicate that each may bgeed tabe specifically programmed-urthermore, sch ML

motivation for ML techniques is theim b i | i ty t o
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moreappropriate in certain circumstances.
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system makes judgemers why it takes ertain actions
leading to the rise ofesearch intdExplainable Al (XAl).
While a lack of understanding arourmbw thesesystens
work can harm the user experiencejiven that ML is
increasingly usedin serious applications such aslaw
enforcement[37], there canalso be very grave societal
implicationsif thesesystemsare not understoodThis has
led to a new area in machine learning researEair
Accountable Transparent Machine Learning (FAMIL),
and the concept of Accountabhlgorithms[30,48].

Issues ofterarise flom a lack ofcomprehensive training

data using trainingdata which embodies existing societal
biases[27] or which has been gathered through a biased

system[11,26]. A notable example of bias with societal
impact is racial bias in ML systemsof-example,some
facial recognition systemsan perform worse for people
with darker skin[7,49]. Whenusedby law enforcemento
identify potential criminad, these systemare more likely
to incorrectly igkntify individuals with darker skirleading



to injustices such asfalse arrests [50]. While improving
data gathering processwill also help achieve fairness
bias can also exist within the algorithms themsel4ds.

Thus explanation techniquescan help users identify

unexpected or unfair behaviodue to eithethe algorithm
or datase

This work is focused onexplaining ML systems that
classify image data. Image classificationhas many
applications guch as object detectin [17], facial

recognition[39], and handwrittentext interpretation[31])

which can be utilized in many realworld situations
(including medical imaging, surveillance, and content
based image retrievgl]), making it awidely researched
area. Its visual nature also providegany opportunities for
explanation techniques.While there are some well
established image classification algorithniis such as
Convolutional Neural Network§CNNs) i the breadth of
this area, as wells futureML researchmay lead tovarious

algorithmsand classification techniqueAs suchthis work

focuses orexplanation techniguesfor opaquebox systera

where the internal implementation is unknown

A crucial concept in imagelassification and @mputer
Vision more broadly is that objectsor features(attributes
that contribute to classificatiorgppear at different scales
For example SIFT (Scalelnvariant FeatureTransform) a
popular objecrecognition algorithm before CNs,
consides this a fundamental aspect of the algorithm
explicitly searching over all possible scal82]. As such,
an effective explanation techniquer image classification
systemsnustcater forvarying scales of features objects

While occlusion heatmapsre an existing explanation
technique for image classificatipthey currently neglect
differences in feature scale. Subsequentlythis study

presents a new explanation techniqué multi-scale

occlusion heatmapsi that extend existing occlusion
heatmapechniquego accommodate varyinfpaturescales

by dynamically combining heatpa of different

granularitiesAn example is shown in Figure 1.

2. RELATED WORK

2.1 Heatmaps

Heatmaps are a simplet powerfuldata visualisationhiat
express the magnitude of some quantity acaasmtinuous
spaceor discrete regionNormally, thesemagnitudesare
thenrepresente by colour overthe space Heatmaps are a
useful visualisation with many applicationsSome
exampes include using heatmaps afyemovement over a
page to predict successful webpage aesthetic§19],
representing traffién datacentre$22], andmeteorological
heatmapsthat indicate heat or pssure over gohysical

space. Heatmaps are an effective visualisation for

conveying data quicklywith one study finding them the
fastest performing chain a decisioamaking taskwithout a
significant reduction in accurag$6].

This study focuses odiscrete2D heatmapsvhich can be
considered as dD matrix of valuesFrom here, the term
fi h e a tisnsqu to refer to a 2D discrete heatmap.

There are two main forms of heatmaptister heatmaps
and spatial heatmaps. With cluster heatmaps,columns
and rows represent independerdgntities, and the cells
represent their interaction. Thesan be reorderedisualy

to identify clusters[34], as demonstrated in Figure 2.
Conversely, spatial heatmapspresent ajuantity over a
fixed space (such asphysical spaceor image spageand

so it does not make sengereorderthe matrix In the case

of explaining image classifiers, a spatial heatmap is used
and the fixed space is the image itself. The quantity for each
region isits importance to the classification
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Figure 2: example of a cluster heatmapn its original form
(left) and dustered (right)

However, heatmapsnormally have a fixed granularity
which does not accommodate the fact tfedtures may
exist at different scalesAs such,heatmaps used for this
purpose are often generated at several granularities
poses an operthallenge of how to combine different
granularities in a way that is clear and accurately portrays
the contribution of each granularity level.

2.2 Convolutional Neural Networks

Artificial neural networks area common ML technique
inspired bybiological neural networks, such as the human
brain [46]. They consist of many artificial neurons
(perceptrons)which take some input value, apply a
function, and produce an outpuNotably, the inputs are
weighted, and these weights are learned duringining
with example dataPerceptronsare joined togetheimto a
networkso that theoutputs of one perceptron are the inputs
to another With adequate training, neural networks have
proved to be an incredibly powerful ML technique with
many applicationd35] and variationsdesignedto better
suit different tasks

One such variation is th€onvolutional Neural Network
(CNN) which is very widely usedin image classifiation
and inspired by the visual cortex in animfl8,28] They
perform better on reaborld image data than traditional
neural networks(multi-layer perceptrons)ecause they
retain spatial structure from the underlying imape. that
nearby pixels are nme relevant to each oth#tran those that
are far aparf40].



CNNs have layerghat use onvolution (a mathematical using complex ML models such as CNIg. However,
operation that combines functionsyhich reducesfree there are promising results from studies with simpler
parameters in the netwofR]. Thisallows CNNsto handle  classifiers. For examplenia study by Ribeio et al,
larger inputs (such as images) more efficiently thanshowing explanations reduceager trust in an obviously
traditionalfully connectecheuralnetwork structures biased classifier compared teovhen there wereno
explanations present [38]. It also led more users to
determine the correct feature leading to classificationtand
do so wih greater certainty.Furthermore, Cai et al.
explored different types of explanations based on providing
examples of imagesknown to the classifier When
explaining a misclassification to a usehey found that
normative explanations (whickhowed examples ofhat
the classifier was expectingjvere more helpful than
comparative explanations (whishhowed examples of what
the misclassified image resembled instgad).

However, sme popular classification systems, such as
FaceNet[39], do not exclusively use a CNNlnstead, a
CNN is used to produce armbedding (a lower
dimensionalrepresentation of an image the form of a
vecto) which is then classified by other ML technigues
such as Support Vector Mach&¥VMs). So, while CNNs
are a keyalgorithm in this spacethere is aneed for
explanation tehniqueswhich also support otheclassifier
systems.

2.3 LRP heatmaps

LRP (Layerwise Relevance Propagatjoheatmaps are a
popular explanation technique for CNNased classifiers
[29]. These are generated by propagating dbtputs of a
neural network back to the input layer, capturing the way
each pixel inthe input was processednd how it
contributed to the outpufd]. However, this requires a
neuratnetwork structure and so canrm applied to other
ML techniquesor hybrid systemssuch aghose which use
SVMs. Regarding kinds of XAl evaluation, Chromik et al.
developed a taxonomgf human evaluation techniquésr
explanationof opaquebox ML models[13]. This includes
defining task types, such as verificaticamnotation,and
forward simulation (where participants predict the outcome
of a system)Furthermore,Zhou et al. foud that model
based and exampleased explanations were primarily
evaluated according tthe simplicity of the explanation,
while attributionbased explanation§hose whichconvey
2.4 Programmatic Occlusion the relative importance of different input featuregdre
A generalised algorithm which can work on amyaque  evaluated accordinto thesoundnessf anexplanation As
box system is programmatic occlusion of the input imagessuch, they suggedtis not possible talefine auniversalset

[44]. In this case, thenfluence of the area is measured by of evaluation metricshat can be applietb all explanation
the difference in thelassifieroutcomebetweenwhen it is methodg45].

presentand occluded. This approach is appropriate for )
opaquebox systems a only the input and outputs are However Bussone at alfound that more comprehensive

interacted with thereare no prerequisites for the internal €XPlanationsn clinical decision support systerfead toan

structure of the classifier systeffihese results can be used OVerreliance on them,even when suggestions were
to produce heatmaps which identify the areas of the imagdcorrect However, less comprehensive explanation

that caused the most change to thessification outcome techniquesl e d t o mi st r u seliabiliyf[8]. t h e
(confidencg. This indicates a nuanced relationshiptweenthe richness

and helpfulnes®f explanationsand that caution must be
An added benefit of a gene i@l whereubingSeXpfathatom tedhiicds ints@tmds wiht
on the inner implementation of the classifier is that the usersignificant consequences.
doesnoét need to understand _the cl as
order to understand the explanatio@cclusion also 3. DESIGN RATIONALE . .
somewhat mimics real life, where objects may become fuIIyThe design ratiorla is presented as a hid#wel overview

or partially occluded by other objects, making it easier for?f EO.W Ithde tngl)vell e>|<p(|j§1natlon tzchn% dyvorks. gu.rther
non-expert users to imagine and reason about. echnical detalls, including pseudoco IScussed in

Section 4

While notbased on image claBsation, other user studies
in the field of XAl may still provide relevant results.
Notably,research byousabziSangdeh et alndicates that
participants were more successful at predictirgoutcome

of the model when there were fewer input featUss.
This poses a risk for image classification predictwith
complex modelsas there are marfgatures some ofwhich
may not be clearly defined or obvious to human perception.

The resulting heatmapan helpusersidentify featuresand
improve prediction accuracyof users forecastinga

cl assi fi e (3f ©theo studiesohave slso shown
that LRP heatmapscan identify taskelevant stimuli
without object segmentationand can be used in
combination with other techniques to predict human eye
gaze[23].

2.5 User studies in XAl - . . . .
While many XAl techniques exist, there are fewer When classifying an image using a macHe&rning

exanples of user studiesvaluating the effectiveness of SySteém, such as a CNNhere arecertain features which
these techniques, particularly regarding image classificatiorfPntributeto a given classification. For example, tracks
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sifier implementation



may be a feature that influences a classifiedaioel an

i mage a €ccliding maitsmfchis imagmay remove
features from the image af fecting t he
when applied to the new, occluded imaljenayreduce the
certainty of classificatior{Figure 3) andeven change the
outcome of classificationf or exampl e,
suggested labe&lnymore As such, fithe score is reduced,
implies that the occluded area was

is notimportant for classification.
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Figure 3: a sketch illustrating how occlusion can reduce
classification certainty

This procedure can berogrammatically repeatedover
every part of the imag€Figure 4)to comprehensively
determine which parts of the imag#ect the classifieri.
are important to classificationand which do noti. are
not important to classification)his data ca then be used
to produce a heatmap over the original im@ggure 5)

I

Figure 4: a sketch illustrating occluding regions in
programmatic occlusion Together, these regions would cover
the entirety of the image.
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Figure 5: a sketchillustrating an example occlusion heatmap,
highlighting the areas of the image that are important to
classification
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important for
classification. If the score is not reduced, it implies the aree

However, featuresn imagescan exist at many different
scalessome features may be inherently smaller than others,
cdma sbiedtsfcaneexisb ad different stzesinthe object may

be further awayappeaing smallet This is demonstrated in
Figure 6.
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Figure 6: a sketch illustrating how features can appear at
different sizesA. between objectsB. within an object

As such, whencreating the heatmaps, it is important to
consider differenbcclusion sizes. Normally, this would be
controlled by a parameter anchanged per generated
heatmap

However, it would be beneficial taonsider all scale
features at once, in a single visualisatian this studythis

is defined aghe primary aggregation problem. The goal

is to combinethe occlusion heatmap data for multiple
scales into a single dastructurewhich can be processed
into a single heatmap that represents all scale @aia.is
illustrated in Figure 7.

Figure 7: a sketch illustrating the effect of occlusion size othe
heatmap: A. large occlusion sizeB. small occlusion sizeC.
multi -scale occlusion sizecombining A and B

A complication with programmatic occlusion is that it
essentially forms &grido over theimage which is arbitrary
compared to the positions of potel features.Therefore,
features couldbe located on an occlusion bounday,
which casethey are notwell distinguishedas a comiete
feature and may not be represented in thesulting
heatmapas illustrated in Figur8. To address this, different
offsets can be usedhich move theocclusion boundaries,
potentially providing bettercoverage ofdifferent features.
Many possible offsets exist andmay produce varying
quality heatmapsHow to aggregatall of thesepaossible
offsetsis defined aghe secondary aggregation problem



The image can therefore beanipulated by changing these
pixel colourvalues.For exampleto change a pixel value to
red you would replace the existing pixel colowith [255,

0, 0], as shown in Figure 10.

Visual representation:

= : A B
. . . . . [0,0,0] [255,0,0]
Figure 8: a sketch illustrating how different occlusionoffsets M. .M
(B and C) can obscure features in tk original image @). In B, MM

the eyes do not fall within a single occlusion region. I@, the 0.00]
eyes fall within individual occlusionregions,but the nose and
Thus, theultimate goal is toproducea visualisationthat
A [[[0,0,0],[0,0,0]] B [[[255,0,0],[0,0,0]]

mouth do not.
optimises acrosboth scaleand offset variationdo produce [10.0,010.0,011 [10.0,01,{0.0.01]
a single optimalheatmagor any given image.

4. TECHNICAL DEVELOPMENT

The algorithm was developed iterativelymproving and Figure 10: an example qf changinaga pixel value from black
refining the implementation as opportunities arose to (&) 1o red (B) shown visually (top) and as code (bottom)
improve either the quality of heatmaps or teenputational 4.2 lterative Programmatic Occlusion

efficiency. The main steps are detailed below. The first step was toimplement basicprogrammatic
occlusionto create a heatmap

Code representation:

The code was written using Pyth&w.7. While it is not
feasible to mention all libraries used, notable examplesBased on an implementation Hyudwig [33], this was
include Pillow [14] (based on th@ython Imaging Library)  implementedas a simpldterative pass from left to right,
and OpenCV [5] for image processingKeras [12] for top to bottom (Figure 11) with a single, customisable
machine learningwhichis based on TensorFloyAnyTree occlusionsize e.g.20 pixelsx 20 pixels.

for the tree datastructureg[9], Numpy [20] for mathematical

operations and dafstructures,and Maplotlib [21] for

creating visualisations (tHeeatmaps).

4.1 Image format

For the purposes of understanding the following algorithm,
it is useful to know that thenage is stored as a 2D array
where each valugepresents a pixel in the imagé&he 5 6 7 8
indices of this 2D array provide the coordinates foe t
imagestarting at the top leftFor examplefor a 2D array
called Image Imagd3,1] would return the pixelin the 9 10 11 12
fourth column and second rqwas shown ifrigure9.

Visual representation: 13 14 15 16

“
B Figure 11: an example image withocclusion areas as per
programmatic occlusion. There arel6 occlusion areasand the

Code representation: order of occlusion startsfrom 1. Note that each occlusion area
covers many pixels.

Image(3,1] In this rudimentarymplementationarea were occluded by
setting the pixel valus to black (RGB [0,0,0]). Once

occluded, the image was passed through the classifier again

Figure 9: an ex_ample of a2b array\_/isualised as pixels with to obtain a new scor@vhere a reduced score implies an
pixel [3,1] highlighted in yellow. important area)These scorewere then used to generate a
The colourfor each pixel igepresented by a-&lue array ~ heatmapof importance per region for a singéeclusion
Thisrepresera RGB values (red, green, blu€or instance size (granularity) This processan be repeated falifferent
ablackpixel would be {, 0, 0]. occlusion sizeto create heatmams different granularities



In pseudocodehis would be: universal formatmay provide many opportunities for
development outsidef theimplementatiorpresented here.

while h < i mage.height :
while w < i mage.width :

occlude | mage(w, wtocclusion Size, h, h+occlusion Size) 6

w = w + occlusion Size —7

h = h + occlusion Size

Root

4.3 Recursive Programmatic Occlusion

To facilitate occlusion at multiple scales in a single pass, , 0
the image was occluded recursivest each scale, tharea L
was divided intaquarters. Then each of these areas was also

divided into quarters, and so @Rigure 12) Again, each of v

these occluded images was passed through the classifier to
obtain a new score.

. . . . Figure 13: the tree structure for the first 12 occlusion area as
This recursive patternprovided a clear parewmhild shown in Figure 12

relationshipbetween different sized regions covering the i ]
same area. This made it much easier to record thd'ees weregenerated breaddirst, repeatedly generating
relationships between regions while processing the imagd'eW child nodes basesh the leaves of the last pass. For

for several heatmap granularities at once. continuity, the root node represented the entire imagjag
occluded
While this implementation does limit occlusioarea

dimensions thepower s of a hal f o fEach podeordainedghe iollowingnformatigns o s

dimensions,as opposed to completely customisabite, - Name(for identification)

provides a simple way to divide the image. - Pixel coordinate for horizontal start of area
- Pixel coordinate for horizontal end of area
- Pixel coordinate for vertical start of area

T T - Pixel coordinate for vertical end of area
1 2 - Importance
718 1| 12 - Pointers to parent and childgions

In this early implementationjmportance was simplp
0 a i i QQQaeflécung itz inverse relationship
between classifier score and occluded importance.

13 14 17 18

15 16 19 20

The recursionstopped wherthe max depttwas reachecda
parameter providefly the userat runtime In pseudocode,

, . . _ the creation of the tree can be expressed as:
Figure 12: an example image withocclusion areas as per
recursive programmatic occlusion. There are 20 occlusion
areas, 4 large and 16 small. Note that the small areas are tree = root
contained within the large areas, as highlighted by the yellow )
. while depth <= maxDepth:
box. The order of occlusion starts from 1.

i . for area in tree.leaves:
4.4 Using a tree to store occlusion data

As mentioned above,hé recursive occlusion pattern area. childl = occlude | mage(area. top_left
encodes a parewchild relationship into the data which area. child2 = occlude | mage(area. top_right)
facilitates the use of a tree damucture for storing the area. chil d3 =occlude | mage(area. bottom_left)

occlusion dataThe mapping from occlusion areas to tiee
shown in Figurel 3.

area. child4 = occlude | mage(area. bottom_right)
depth = depth + 1
Trees are awidely used datatructure that encode
hierarchical relationshipsAs such, thg have a well- ) _ )
defined vocabularyand many establishedalgorithms  for T_he output of thl_s function was a tree which re_presented a
parsing andmanipulathg them (for example pruning or different granularity heatmap at each depth. This sbtiie

balancim) [15]. Encoding the importance data in such a prinlwary aggregation problem of combining multiple
scales.



4.5 Implementing dynamic granularity
Given the tree contains dhe possiblescaleheatmapsthe
next step was to determimehich scaleto use for each area

boundariesand its importance scarehe corresponding
section of the blank heatmamudd be updated with the
importance scoreas demonstrated in Figure.lRepeated

of the heatmap. This was achieved through pruning the treegver all leaves, this producéise data fo the full heatmap

Pruning was based on two assumptions:

1. There should be no loss of information

represenhg the entire image

2. Smaller areas are preferred over larger areas wher ol ol ol o
pOSSib|e Node 1 Node 2
0.5 0 0 0 w_start: 0 w_start: 2
Assumption 1 was based aoncepts fom information w_end: 1 w_end: 4
theory[6] where,in this case, information is the importance 0| o |09 |09 hfita;d_ ; h‘?amd- i
value.As such,given a parent node with four children, the importance: 0.5 impona;::- oo
childrenwere pruned if thesum of their importance values 0| 0 |05 )08

were lower than the parent importance value, as thisi@spl
that the parent conved more information than the
children. Alternatively,if the sum of the child importance

values was greater than the parent importance value, the

children were kept in the tre@his process was repeated
over every node inthe tree so that he remaining leaves
representedhe finest granularity information for each area
of the whole image.

A

0.1

0.1

0.4

0.4
— 0.6

0.3

0.3

0.1

— 0.9

0.2

0.3

Figure 14: the results of pruning A. a parent where the
children have a greater summed importanceB. a parent
which has a greater importance than the sum of its children.
Note that the zero importance value is always pruned.

By assuming azero importancevalue for any undefined
areas, the tree could also be pruned of alles withzero or
nearzero importancevalues This generallymade the tree
much sparserwhich improved computational efficiency.
Examples of pruning are shown in Figure 1
pseudocode, the pruning rule is defined as:

for parent in tree:
if (parentimportance > sum(childimportance)):

pruneChildren(parent)

4.6 Converting the Tree to a Heatmap

To convert the tree to a heatméipst a blank heatma@D
matrix) matching the size of the original images created.
A single passvas done over all the leaves of theuned
tree. As each node contaéd its horizontal and vertical

Figure 15: example heatmapdata and its correspondingleaf
nodes

The heatmap data waonverted to the visualisation by
mapping a colour scaleto importance valuesin this
implementationMatplotli b ke d $obour scat was used
to indicate importancas this is consistent withow red is
used inLRP heatmapsEach area in the heatmahpen
adops a colour based on itmagnitudeand thisis overlaid
on top of the original imagdor ease of interptation

(Figure 16)
Most
important
9
Least
important

Figure 16: example heatmap data and theorrespondingfinal
heatmap visualisationoverlaid onto the original image

0.5 0 0 0

0.9 | 09

09 | 09

4.7 Refining Occlusion Colour

In early tests, usinglack RGB [0, 0, 0]) to occlude areas
caused unexpectetlehaviour from the classifiewhich
made subsequent heatmaps unintelligiflee hypothesis is
that this occlusion colouted to stark contrast boundaries

which meant the occluded area was interpreted as a new

feature, as opposed to the lack of any feature

At first, the fill colour was taken as the average colour of

the occludedpixels, but this could still lead to harsh

contrast boundaries or discontinuities in the image if there

was a distinctive colour within this area.

As such, the final implementatiausedthe averagecolour
of neighbouring pixelgone pixeldeepoutside of the given
regionon all four sidesas shown in Figur7). This would
moreef f ectively fAeraseo the
improve continuity with the original image
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A B
1 2 1 2 3
3 4 4 5 6
C D
1 2 1 2 3
Figure 17: neighbouring pixels (yellow) for a given occlusion 3 4 4 5 6
area (grey)
More sophisticatednfilling techniques, such agenerative 5 6 7 8 9
inpainting[43], exig but using them was outside the scope
of this work.

4.8 Refining the Importance Heuristic

;)rlglin?IIy','olmp‘or:ta‘nC(‘a v‘\’/a‘s qlgzgrrpl'ne'd tggvgglgl)sm\ﬁ)lp . ,QFigure 18: the four offset conditionsshowing the occlusion
eurisic Vanel 0 GE Wi wl | WEYED,E | numbered occlusion areasA. no offset,B. half-width

this incorrectly assumed that theriginal image had a  nhorizontal offset, C. half-height horizontal offset, D. both half-

classification score close to 1.ttfe original (uroccluded) width and half-height offset The dotted lines indicate the

image had a low classification score, importance would theoretical regions while the solid lineindicate the final

always be highAs such, tle heuristicwas refinedto make occlusion regions, after cropping.

,',t fe"a“,"? t‘o ‘.‘:'%%Slf'.c"f,‘",or} score Pf“*loﬂg,'”?" Image This offset pattern was repeated recursively at all scales in
Oan el owyowdl | QRVAI Yoel Q %t ee While the fino offsed condition always create

01 Q00 ®adani D WQRRNVQS aDi i Q {aﬁild?(éﬂ trlgife 184), the single direction and bi

This a_tII(_)we(_:i the system to t_)e more roby_st in the case thatﬁirection offsetscreatel six (Figure 18B, 18C) or nine

the original image was not sidently classified (Figure 18D) children respectivelyWith offset, children

4.9 Offset canfall partly or completely outside of the original bounds.
As explained inSection 3 when splitting the image into As such, regionsvere croppedio remain within parent
areasfor the purpose of a heatmap, thesitions of areas regions and within the bounds of the original imabeese
arearbitrarywith regards to the imagmntent,and this can  changesrequired several refinements to the algorithm for
cause issuewhen trying to distinguish features robustness against negative image coordinates as well as

In theiterativeimplementation, thigvas overcome by strid more complex logic to determineow many children to
P ’ come by stride produce. When pruning the tree, all children were

which can be S.Gt as a separate param‘e'tgr.stnde is how . considered ascontributing to the sumequally Once
far the occluding area moves each time. In the basic

: : . . created, thesdour heatmaps were combined through a
mplementaﬂon without offs_et, the stride wd equal the simple average taking the mean pixel valu@cross
width/height of the occluding area. However, whire

S . heatmaps.
stride issmallerthan he areathe occlusiorareaoverlaps
with its previous positioa This allows alternate region However, itquickly became apparent this method was not
boundariesto be checkedHowever, as the treeased  sufficient. Asboth the original occlusion areand offset
implementation ses recursive area divisiostride in this ~ were based on halvesafter the first depth, all regions
sense was not an optidnstead, a global offset was applied aligned perfectly as before offset. This meant that if a
to theentireheatmapmakingprocessand this was repeated feature existed on the boundarfya smaller scaldt would
for different offsetsOriginally four offsets were considered still not be accounted for.
based on theize of theocclusionarea adepthl (aquarter  , ;4 refined Offset

of theoriginalimage).As shown in Figurd8, these were: To improve theoffset implementationsuch that all scales

- nooffset had some offset variatiprthe offset value was set to half
- half-width offset the size of the smallestaleocclusionarea. For example, if
- half-height offset the smallest occlusion area was 10 pixgide, the offset

- both halfwidth and hakheight offset would be 5 pixelsThen, b ensure thaall possible offsets

were consideredthe heatmap was offset by mulapl of



this value up until the size of the largest regi¢malf the
image width)at which point the offsets would repeats
shown in Figurel9. Again, all regions were cropped to the
remain within the parent region and the image boundaries.

A
1 2
3 4
B
1 I
4 5 6
C
1 2 3
4 5 6
D
D 3
4 5 6
E
1 2
3 4

Figure 19: an example ofocclusion areas withhorizontal offset
as perthe refined algorithm. Note how A and Eare effectively
the same.The dotted lines irdicate thetheoretical regions
while the solid lines indicate the final occlusion regions, after

cropping.

As anexamplej f an i mageos
pixels and its smallesicclusion area wa%0 pixels,there
would be offsets & pixels,10 pixels €, 3 @ndp5 x
pixels. These offsets needed to be applied both horizontall
and vertically. Tocover all possible offsets, every single
combination of horizontal and vertical offsdtad to be
consideregdcreating a potentidieatmap for each onehib

| ar g e sitthexlassified s i on

drastically increased the number of heatmaps cregieen
by: For an image with
dimension80 pixels x 80 pixels, the largest occlusioarea
would be40 pixels x 40 pixels At depth 3 the smallest

occlusion areavould be 10pixels x 10 pixels giving a5-
pixel offset Thus, b generateall possible offsets would

require— @ theatmaps.

At first, all heatmapsvere combinediy taking the mean
value for each area across all heatmaps. Howehés,
resulted in visualisations with amooth blur(shown in
Figure 20, akin to aGaussian blurfrom averaging across
so manydifferent heatmapsThis negated the value dhe
multi-granularity heatmapwhich were meant to be more
specific. As such, though this solved thsecondary
aggregation problem of combining all offsets, he
algorithmwas refined further.

Figure 20: a heatmap generated for an image of &rain from
the PASCAL dataset[17], showing the blurry output of
combining all offset heatmapslt consists of 256 combined
heatmaps with a max depth of 5.

411Choosi n @®e $ O#seti

As combining all heatmapghrough an average was
problematic,rather than trying to combine the information
from all heatmapsthe algorithm couldnsteadtry to find
the fibestd heatmap from the
However, thisrequired a heuristic for determining the
ibesto heat map.

First, aa adversarial approach was considereavhich the
entire heatmap would be used as an occlusion mask over
the original imageThis would then be classified again to
achieve another scor&imilar to occlusion for individual
regions, the idea &s that the more classifier confidence
was reduced, the better the occlusion, and therefoze
heatmap.However, this was inefficientrequiring further
image processing, and relied on a possibly incorrect
assumption that the besbverall heatmap for explaining
features wouldcause thegreatest performance degradation
area was 40

tead,it was morecomputationallyefficient and more

yF(:gicall'y soundto compare trees directlynspired by the

concept of information density{6], a heuristic was
developed thatalculated a linear combination of all leaf
importance scoregactivation) divided by the total area



coveredby these areas (coverag@his cave a value of
importance per areavhere thefbesd heatmapwas defined
as the one which convegithe most importance in the least
area (i.e. the most informatiodense) This favoured
heatmaps with finer granularitjNote, his method workd
becausezero and neareroimportance nodewere pruned
from the tree otherwisethe totalarea would always equal
the whole imageAs the various offsetheatmapswere
created, the best heatmaas stored It was overwritten
whena new heatmap achieved a better heuristic séare
example output is shown in Figure 21.

Figure 21: a heatmap generated for the same image oftein
as Figure 20, taking the singlefi b e effsebheatmap

4.12 A Combination of Methods

Figure 22: a heatmap generated for the same image ofteain

as Figure 20, combined

f 5 offset heatmaps Withe s t 0

a max depth of 5

5. USER TESTING

To test the effectiveness of this visualisation, a user study
was performedTo obtain results that could be compared to
othervisualisationsthis study extended the work done by
Algaraawi [3] with LRP heamaps using the samstudy
protocol, classification images and user interface A
comparison of multscale occlusion heatmaps and LRP
heatmaps is shown in Figure Zhe general pattern of this

study is forward simulation 1

participants are shown

example classifications and then asked to iptethe

classification for a new imadé3].

The above worked well but there was some concern thabue to the timing and budget constraints of this being a
MSc project, this studyx@endsthe previous study rather
than replicating itAs such, this study collects data for two
additional conditions which are added to tietafor the
was adaptedsuch that an additional parameter could be four conditions of the original study.

there could b several usefubffsets that capture different
features.As such, combiimg the two methodgrom 4.10
and 4.11offered a beneficial compromiserhe algorithm

provided: the number of heatmaps to corabii.

Instead of storing only the best heatmap, the kst
heatmaps would be stored and combirmd taking the
average.This allows for flexibility between the other two

options as in the cage p, it providesthdibe st 06 he &

as abovewhile 0 & @ ® Qa4 @.9.64, as in the previous
exampl¢ provides the outcome of combining every
possible heatmap This provided a usercustomisable
balancebetweerrepresentingeveral offsets while retaining
the value of the mukscale heatmapy keepingsmaller
more specific,regionsdiscernible An example output is
shown in Figure 22.

However, this implementation still involved generating
every possible heatmap which is very computationally
intensive.To optimise this codeufure workwould involve
paralleligsng the code or identifipng which offsetsare most
beneficial to generate, before generating them.
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A B

Figure 23. A. a sample image from the PASCAldataset[17],
B. the multi -scaleocclusion heatmap for this image(C. the
LRP heatmap for this image

5.1 Participants

32 participants were recruited through thecademic
crowdsourcing community Prolific Academifor greater
consistency with Algaraawet ald s s Paticpants had
to be at least 18 yeamsd with normal or corrected to
normal vision and required technical background (such as
a degree incomputing orengineering).Participants also
needed to be fluent in Englishave a Prolific Academic
approval rate above 95%nd be able to complete the task
using a laptopThe participants wersplit evenly between
two conditionsresulting in 16 participants per condition.

! https://prolific.co/



This extends the original study which had 64 participa generationAs in the previous studpnlyt he ¢l asses
across 4 condition§16 per condition) When combined, and fihor s dodsimpleitye used

this gives a total of 96 participants across 6 conulitio Regarding algorithm parametershet heatmaps were

5.2 Design generatedusing a maxmum depth of 4and the best 5
This study had a single factocléssificationscores) with heatmapswere combined In contrast to the technical
two conditions g¢cores shownscoresnot shown). In this  development above, the occlusion area was filled with grey
study the multi-scale occlusion heatmaps were always (RGB [169, 169, B9]) instead of using the neighbouring
shown as the controlcondition was provided from the pixel technique. Tis was to ensure consistency with
previous study When combined with the previous study, anotherconcurrent stug which was ultimately not used in

there weres conditions in totalas shown in Table 1. future comparisons.
Condition | Heatmap Scores 5.3.2 Study interface
T 1 iUl -Scale Shown The study mterfa_ce is the same as the previous swyjrjeb
X interface built using HTML5, CSS, Python and Django.
study occlusion . .
The LRP heatnaps were replaced with themulti-scale
2 Multi-scale Not shown occlusion heatmaps amdlevantinstructions were updated.
occlusion Changes to the instructions were kept as minimal as
Previous | 3 LRP Shown possible for consistencput necessarghanges were made
study to explain the new heatmaps andtfjpographical errorer
4 LRP Not shown accessibility issues like low colour contrast.
5 No heatmap Shown 5.4 Procedure
5 No heatma Notshown Participants were first asked to give informed consEmey
P were then shown a short set of instructions which included
Table 1:factors and conditions across this study and the information about the SWV'OW to receive h|ghe‘ma_nC|aI
previous study[3] which it extends rewards h.ow to use thenterfacg'and an explanauon of
) N o classification outcomegtrue positive,true negative, false
Note that in all conditions, participants are shown exasple positive, andfalse negative Par t i ci p ascdres i n
of images that classify as true positivalse positive,and showd condition were t Hoethis shown
false negative. visualisation. All participants were then shown instructions

Conditiors were betweensubjects to avoid learning effects that explained what the heatmap visualisation was and how

that could occur if they repeated the activity in a secondt© interpret it (that darker red meanthe area greater
condition. Rarticipants were randomly assigned to a supported the given predictionNext, participants were

condition shown examples of a task aasked to complete some short
_ questions to demonstrate whether they bhaderstood the
5.3 Materials instructions.

5.3.1 Dataset and CNN architecture

To generateexample heatmaps classification system and
dataset were requirefls in Algaraawiet ald s g[3],thd y
dataset used was the PASCAL Visua@bject Classes
dataset (2008) whiclsontains images across 20 different Following the completiorof the tasks, participantselt
classes.The PASCAL Visual Object Classes challenge reportedwhich information they had found useful during
providesa benchmark in visual object category recognition the task ¢utcomes(e.g., true positivg, the heatmaps, the
and detectiofi17]. In this study the same CNN architecture classification scorgsandwhat they had learnedhey were
and weights of the trained modekere usedto ensure  also provided with feedback on theimswers, s.a score out
consistent results between the twodsés. This CNN wasa of 14, and their subsequent reward amotwuirther down
pretrained Keras model (trained on ImageNetyising the  the page, participants could vietheir answes and the
VGG16 architecturewhich was then finduned on the  correct answesfor each of the 14 images.

PASCAL datasetNotably, this CNN was purposely trained
to not reach stat®f-the-art performanceo explore how
visualisatios may help understanding both strengths and
weaknesses in a model. Theerage precision of the CNN  5.4.1 Task Structure

was 0.91on the training seand 0.73 on the validation set. ~ During a taskthe participant is shown 12 example images

) o .. (6 true positive, 3 false positive and 3 false negatiehe
As the intentionis not to test the accuracy of the classifier given cl ass 0 Afexanplé of bow this wasr s e

on new data but to understandahib in_te_rprets knowrdata, displayed is shown in Figure 2t each case, they see the
images were taken from the training det heatmap  giginal image and thenulti-scale occlusion heatmap. If

Upon completion of thisstep the participants began the
main study, comprising of 14 tasks. él'ttask structure is
explained below.

Participants were paid £8 for participation with an
additional £0.50 for each correcatisaver

11



they are in théiscors s h oowdition, they will also see  (F(1,9070.002, p=0.964). Similarly, there were no interaction
the classification scores for eathageas a barchart To effects (kp, 9072.656, p=0076).
counterbalance any learned effects, half of participants firstl_

saw the images of cats while half began with images of he average percent of correct forecasts were also
horses. calculated per task type (true positive, false positive, and

false negative). Accuracy was highest for true positive
images at 77.2%. False positive tasks remained lower with
LA 44.2% accuracy and lowstill for false negative tasks with

only 38.5% correctly predicted.

Qutcome prediction accuracy

0.8
Figure 24: an example of how images, heatmaps and

classification outcomes were shown to participants. In the
condition without scores, users saw the same interface except
that the score graph was missing.

0.6

0.4

Following this, participants were shown a new image
without any heatmap or score da®articipantsvere asked
to list any features theyhbughtthe classifier was sertbsie

Fraction of correct forecast per participant

0.2

to and any it ignoredThey were then askeifl the image i N o

would be classifiedas containing the given class, e.g. ’ LRP None  Muli-Scale Notshown  Shawn

fi h o r amdtadrate their confidence in their answer using a Hoatmap Scores
4-point LikertScale[24]f rom fAextrem&l| ¥0 v e v v uwoeue

iextremely confidento. Figure 25: The averagefraction of correct forecasts per

participant in each condition. Neither heatmaps(left) nor

The task images used wetee sameas in the previous scores(right) significantly impacted prediction performance.

study.In the previous studyhese were selectexd they had
a fi-madgeodo classificati on sQveralethesgvalueshindicaithe same findings from thel i e s ,
provideda good balance of difficulty for predictid8]. previous studythat this isgenerally a challengingtask

6. RESULTS particularly for false negative and false positive

As this studyextendsthe work of Alqaraawi et al. [3] identificationswhere participant performance is worse than

through an additional heatmap condition, the data gathere{iandom chance.

in the user study above was combined with the data fron6.2 Confidence

the original studyand processed again in aggregé&ihere As well as prediéhg the outcome, participants were asked
appropriate, te same analysis aa the previous study was to seltreport their confidence that their answer was correct.
performed so that direct comparisonsowd be made The Likert values of extremely unconfidentslightly
between the twoDue to the additionaheatmap condition, —unconfident slightly confident and extremely confident
posthoc tests were requiredll statistical tests rejected the were mapped @ values 1 to 4 respectivelyor numerical
null hypothesis at thsignificance level 0.05. analysis.Consistent with the previous study, the median
was 3 corresponding to thslightly confidentresponseA
KruskalWallis testshowed that @nfidence did not vary

. . X significantly between different heatmapconditions
predict theclassificationoutcomeof an image when passed (H(5)=3.178 p=0673)
through the CNN.For example, a participantorrectly '
predicts that an imageill be classified as containing a 6.3 Mentioned Features
horse.As in the previous studyparticipantperformance As well as predictingthe classification outcome and
wasassessebtlased on theroportionof correctpredictions  indicating their confidence levels, participants were also
per participah The results of prediction accuracy are asked to indicate which features they thought the classifier
summarised in Figures. was sensitive toi.e., contribued to classification) and
. i , i - which features the classifier ignored (i.e. did not contribute
A Shap|r0W|I_k test confirmed that M.B Pfed'Ct'O” accuracy 14 classification).These answers were given throufgae
was approximately —normally distributed = (W=0.964, qoy; 5 aliow for any possible answer and to avoid priming

p<0.01)ALeveneds Test showed ﬂ%u‘ﬁcrip n%%ﬂ?ovo‘fn&sug\éeasnb'ances

between groupswere similar (Rs9057=0.882, p=0.497)

Following this, a tweway independent ANOVA was 6.3.1 Excluded Data

performedwhich identified that there were no significant NO participantsfrom our new dataset eve excluded. One
main effects of heatmap @o=3.067, p=0.051) or scores fesponse from one participant was missing due to a

6.1 Outcome prediction accuracy
This metric measures the ability of participantsdorectly
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technical fault. Howevertwo excluded participantsfrom previous stug. This revealed a significant main effect of
the original datasetontinued to be excludeat this stage, heatmap on the saliencyfeature ratio (Fqss=12.340,
as thei answers indicated they had misunderstood the task.p<0.01). There was no significant main effect of showing

Furthermore,in the previous study, information on the the scores (fs5=0.788 p=0.380) and no interaction effect

ignored features was not used due to misinterpretation (Fe.83=0.332 p=0.719.

the questionby many of the participantsAs such, lis A posthoc Tukey Test indicated significant differences
question was still asked during ethnew study for between botht h e ino heat mastaled anc
consistency (in case it changed the way participantso ccl usi ono(p=@¢Odhahddnomnbeat mapso
approached the task) baris not analysed. fi L R Reonditions p<0.0). There was no significant
difference between th& mti-$caleocclusiordo a n d.RPa
conditions p=0.06). As participantshad highersaliency
featureratios in the LRRu=0.840, Q154 andocclusion

@:0.711 Q%8 conditions, this suggests that both LRP
heatmaps andnulti-scale occlusion heatmaps encouraged
participants to mention morsaliencyfeaturesthan when

no heatmap was preseft=0.546 Ql1284. This data is
summarised in Figurg6.

6.3.2 Analysis approach

A deductive(top-down) approacto coding was adopted,
using the codebook from the previous stufyue to the
nature of the study, the responses were only analysed by
single researcherthoughin a largerscale study multiple
coders would bereferredin order to measure inteater
reliability. The previous dataset had both raw and coded
answers avéable which was used to ensure consistency
when coding the new data.

Proportion of saliency-features mentioned
These codes belong to two grougaliencyfeaturesand 1
generalattributes Saliencyfeaturesare codes that relate to
localised featureswithin the imageand cantherefore be
representedhrough a heatmapExamplescodesinclude
eyes and legs Conversely, generalattributes refer to
features which are properties of the whole imageample
codesincludeimage qualiy or backgroundIn the previous
study, the codes wergeparatd this wayto compare the
localised features that heatmaps may have highlighted

05 N ll

0.2

Average participant saliency-features ratio

(saliencyfeature$ to more general oneshat heatmaps 088 | pe0711 p0719 | =079
. . . 0=0.154 0=0.218 0=0.259 @=0.247
would not have highlightedyéneralattributes. 0 o — T ——
Occlusion
Though mostly deductive, one new codeck was added Heatmap Scores

inductively as it appearedl7 times across multiple

participantsin the new dataAs such, itwas deemed  Figure 26: The average parttipant saliencyfeaturesratio for
significant enough it should besaparate coddhere were each condition.Both LRP heatmaps andmulti -scaleocclusion

2 responses includingeckin the previous dataset which heatmaps lead to a significant increase compared to no
were updated to reflect this newsde.Neckwas considered heatmaps(left). Scores had no significant effect osaliency
asaliencyfeature featuresratio (right) .

6.3.3 Analysis results To further analyse mentioned featurélse percentage of

As per the previous studyo accommodate the fact that responses containinggach code was calculated. This
usual answer lengtttotal number of featurementionejj ~ Normalisesthe frequency across codesd conditions,
tended to vary  participant,the saliencyfeatures ratiois  allowing for direct comparison The resultsfor cats are
considered for analysis. This is the ratio sdliency summarised in Figur7 and the results for horses are
featuresto generatattribute features obtained by dividing ~summarised in Figur8. Overall,the multi-scaleocclusion

the number of mentionedaliencyfeature codes bythe  heatmaps seemed to follow a similar trend to the LRP
number ofall saliencyfeatureand generatattribute codes ~ heatmaps in terms of which featurélsey encouraged
identified from their esponseA value greater than 0.5 Participants to mentiothe most However, themulti-scale

indicates that mostieatures mentioned wersaliency ~ occlusion heatmaps seemedcasistentlyencouragenore
features generalattribute featuresto be mentione¢ompared tahe

] i . ) LPR heatmaps.Additionally, among saliencyfeatures
A ShapireWilk test showedtha the saliencyfeaturesratio there are some exampledere more general features are
between groupsvere not normally distributed(\W=0.916, favoured over more specific ones. For example, fue
p<0.0). A L ev enshovwed theeesere statistically  feature was mentioned more wittmulti-scale occlusion
significant  differences between group$s69=3.056  heatmaps than LRP heatmaps for both cats and horses.

p=0.014. To account for the nenormal distribution.a  nore specific facial featuréissuch asyes ears andnose
white-corrected coefficient covariance matf#2] was used  for cat andmouth and nosefor horsei were mentioned

in a two-way independent measures ANOVAs in the  mgre withLRP heatmaps
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Figure 27: the percentage ofcat responses containing the differensaliencyfeatures(top) and generatattributes(bottom) for the
different heatmap conditionsLRP heatmaps multi -scale @clusionheatmapsand no heatmaps
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Figure 28: the percentage of horse responses containing the differesaliencyfeatures(top) and generatattributes(bottom) for the
different heatmap conditions LRPheatmaps multi-scale @clusionheatmapsand no heatmaps
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7. DISCUSSION participants may have answeredrtly according to their
Overall,versus no heatmapmulti-scale @clusion heatmaps internal assumptionsas opposed tsolely based on the
did not lead to a significant improvement in prediction visualisations providedzurther researchmay help establish
accuracy but dietlicit a higher ratio of mentioneshliency whether this is true.

features These results indicate thatulti-scale occlusion
heatmaps havthe potential to highlight important features
to users butrequire additional réfiement in order to
achieve a significanimprovement in prediction accuracy.
Specific metrics are discussed in detail below.

7.2 Confidence

The confidence measures were consistent witlptbeious
study, that there were no significant differences in
confidence between conditions and titta¢ melian value
wasslfi ghtl y. As esutH, thed perfotmance of
7.1 Outcome Prediction Accuracy multi-scale occlusion heatmaps comparable to LRP
Neither multi-scale occlusion heatmapsr LRP heatmaps heatmapsn terms of making users feel confident

were found to significantly increaseutcane prediction

accuracy ovetheno heatmajgondition 7.3 Mentioned Features

The presence ofmulti-scale occlusion heatmaps did lead
This differs from the previous study in whithe heatmap  participants to mention significantly mosaliercy-features
condition did indicate a significant effect on performance in images compared to no heatmap, indicating tthey did
(Fae074.191, p=0.045). Namely, that LRP heatmaps led tohelp participantdnterpret featurem the image.

a significant improvement in prediction succes©ne
hypothesis for this is becausiege new data for the mudti
scale occlusion heatmapad greater variano@?=0.0144)
than the previous conditioffsRP (?=0.0121, No heatmaps
0%?=0.0126), it increased the variance withufistributions
affecting the resultof the ANOVA. Overall, this study
should be replicated with all conditiomsstedat the same
time remove angambiguity in the results

There was a slightrend that responses fromulti-scale
occlusion heatmaps tended to favogeneralattributes
over saliercy-featurescompared with the LRP heatmaps.
This indicates that theulti-scaleocclusion heatmaps may
have less precision than LRP heatmaps or mayufavmre
general features. One hypothesis is thecause LRP is
pixel-based [4] as opposed tomulti-scale occlusion
heatmaps which are arbased, LRPfavours highlighting
finer details in images. LRP heatmapayalso have a bias
towards highlighting edges, due totheir use of the
underlying CNNwhich is often sensitive to edgeghis
12 . may explain why LRP heatmaps led to legsneral
attribute features which cannot be localised to a pixel.

Outcome Prediction Accuracy

! L Another notable example of differences in responses
x between heatap conditions waghat more participants
. mentionedii n e evikhdhe multi-scaleocclusion heatmaps
. L (17) versus LRP heatmaps (2), leading to a new code being
introduced. This further supporthe ideathat different
heatmaps may promote different features. Further research
should be completed to explore this further and determine if
0 there are statistically significant differences between the
BLRP O Multi-Scale Occlusion B None kinds of codes mentioned based on the heatmap shown.

Questions answered correctly

Figure 29: A boxplot showing the skew oparticipant accuracy ~ 1h€ diclotomy of saliercy-featuresand generatattributes
per condition for all 14 questions was inherited from the previous study and defined as
" __features that could be localised within a heatnsai€rcy-
The accuracy per task type (true positive, false negativetearyreg and those which could nogéneratattributes.
etc.) was also similar to the previous study with true This was based on the behaviourldtP heatmaps which
positive tasksgenerally answeredmore accurately than .o pixelbased and therefore incredibly localised.
either false negative or false positive taskscuracyrates However, multi-scale occlusion heatmapsan have much
for false negative and false positive tasks remain belowy,q e coverage than LRP heatmaps, including some
50%, i.e. worse than random, indicating that this is an examples where the whole image is returnedeqsally
inherently difficult taskThis may bevisible in the negative  jmportant. In this way, the multi-scalenature of this new
skew of boxplotsin Figure 29, which suggest that some  gchnique ray actuallyimply the importance ofjenerat
questions werdiarder than otherasvery few participants  4rinutes violating the originabasis of the dichotomy and
scored above 10Lowered performanceé n  fif al s engy it wAS defned. In future work, these definioand
may indicate a bias based @ersonalbeliefs about the g hsequent metricsvould likely be relefined to beter

capability of these kinds of technologiesspecially as the  o~.ommodate the kinds of features each heatmap can
performance of theclassifier used in this tedy is convey.

intentionally below currentindustry standardsln this case,
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7.4 Comparisons with LRP partly through more elegant implementations thadre
As LRP heatmaps (currently popular and widelyused outside the scope of this work.

explanation techniqu§29]) did not perform significantly
better than multi-scale occlusion heatmaps regarding
prediction accuracy osaliercy-featuresratio, this suggests
that multi-scaleocclusion heatmaps also have the potential
to be useful in realorld applications. However, further
research with significant prediction results needed to
establish this.

8.2 Limitations of the user study

Due tothe timing and budget constraints of this being a
MSc project it extended a previous study rather than
replicating it. A serious limitation ofthis was that the
control condition(no heatmapsyvas notcollecied at the
same timeas the newdata. Instead, the control condition
was measuredughly 2 years prior to this study as part of
Given the variations in the qualitative responses, withthe original study.Therefore,there may beconfounding
multi-scale occlusion heatmaps seeming to favour more variablesrelated to the passage of tintlkeat cannot be
general features, there may be different situations wheredentified and may have adversely affected the results of the
one heatmap technique is more appropriate given the naturgtudy. In future work,to minimise confounding variables

of the underlying image data. Furthermomgplti-scale the study should be replicated complgt with all
occlusion heatmaps can be applied to any opagye conditions performed at once.

system while LRP heatmaps require access to the traine
CNN network. As such, even if LRP heatmapsre to

perform significantly betterulti-scaleocclusion heatmaps true positiveclassificationfor a given example. As this was
may still be of use in situations where the underlying P 9 pie.

classification system is unknown or inaccessible. FurthernOt a basis for excluding participants in the previous study,

research could explore the different applications of thesethey were not excludetfom this sudy. However, if they

heatmaps and when each technique is most valuable. m|sunderstopd the terminology and the task, 't. may have
affected theirperformance In total, 8 of 32 participants

8. LIMITATIONS AND FUTURE WORK failed one or both of thesguestionsso this may well have
8.1 Limitations of the algorithm had a sign'ifi'cant impact on the overal] results. In future
While different scaé datawas combinedwithin a single work, part|C|.pa.nts that fail the. screening task should be
tree, in future workit would bevaluableto combire the ~ fémoved teeliminateany uncertainty.

different offsetdatainto a singletree as welland process 9. CONCLUSION

this datastructure toestablishthe optimal heatmaprThis This paper presents a novekxplanation technique for
may allow for more sophisticatedethods for finding the  opaquebox image classifierthat accommodates features at
optimum offsetas opposed teaggregating the besh various scalesby encapsulatinghe data from multiple
heatmaps according to a heuristic. Toauld allow for a  granularities into a single visualisation.

more accurate visualisation arad more computationdy
effective implementationFrom initial investigation, His
proved to be a very difficult problem and so could not be
completed within the scope of this workn alternative
algorithm that could make use of such a datstructure
would involveeachsmallestg r anul ar i tingd rfeogﬁ
theparent (offset)t is best represented by

ﬁihere were also somparticipants that failed the initial
screening questiagninvolving identifying a false positive

This technique was evaluated through a user study
extending the work of Algaraawi et &3], comparing
performancewith no heatmaps and LRP heatmayhile

the multi-scale occlusion heatmapglid not provide a
i’g@ﬁﬁantﬁirg%ogement in prediction accura@ersus no
eatmap), they did lead to significantly more specific
features being mentioned by participants compared to when
Additionally, theinfilling implementatiori which provides no heatmap was preserithe performance of thi new

the replacement for the occluded aregould be improved  technique was comparable to LRRatmapswhich also

In the user study, the occluded area ¥iléed with grey to showed no significant improvement in prediction accuracy
ensure consistency with another paper that was eventuallput a significantincrease in mentionespecific featuresAs

not used for comparison. However, even the such,this new techniquemay be a useful addition to the
implementationusing the average of neighbouring pixel growing body of XAl research particularly as it can be
colourscould berefined further For examplegenerative  applied to any opagugox system However,further work
inpainting techniques[43] could be usedthat would is required to establish thimidto ascertainwhich situations
effectively erase the aresithout adding new artefacts to this technique is most appropriate for.

the image.This is important asliscontinuities (wherghe

colour suddenlychangel may appear to the classification It would not have been possibto complete the work in

system as an edgéeing interpreted as thaddition of this paper without the help of my supervisor, Enrico

sqmethmg new rather than simply the absence of theCostanzaand his PhD studentshmed Algagaw. | am
original feature.

incredibly gratefulfor the time and expertisethey have
Furthermorethere are likely opportunities for optimisation shared with mge especially given the exceptional
in the existing algorithm, partly through parallelisation and circumstances at ¢htime of writing.

ACKNOWLEDGEMENTS

16



REFERENCES

1.

10.

11.

12.

13.

Tinku Acharya and Ajoy K Ray. 2005mage
Processing: Principles and Applications

Hamed Habibi Aghdam and Elnaz Jahani Heravi.
2017. Guide to Convolutional Neural Networks
Springer.

Ahmed Algaraawi, Martin Schuessler, Philipp
Weil3, Enrico Costanza, and Nadia Berthouze.
2020. Evaluating saliency map explanations for
convolutional neural networks. International
Conference on Intelligent User Interfaces,
Proceedings Ul 275 285.

Sebatian Bach, Alexander Binder, Grégoire
Montavon, Frederick Klauschen, Klat&®bert
Muller, and Wojciech Samek. 2015. On Pi#lse
Explanations for NoiLinear Classifier Decisions
by LayerWise Relevance Propagation. .

G. Bradski. 2000. The OpenCV Libga Dr.
Dobbés Journal. of

Leon Brillouin. 2013. Science and Information
Theory Courier Corporation.

Joy Buolamwini and Timnit Gebru. 2018. Gender
Shades: Intersectional Accuracy Disparities in
Commercial Gender ClassificatioRroceedings of
Machine Learning Resear@i: 77 91.

Adrian Bussone, Simone Stumpf, and Dympna
O6Sul livan. 2015. The
and reliance in clinical decision support systems.
Proceedings 2015 IEEE International Conference
on Heathcare Informatics, ICHI 2015160° 169.

COfecOde and Others. Any Python Tree Déata
anytree 2.8.0 documentation. Retrieved August 30,
2021 from https://anytree.readthedocs.io/en/latest/.

14.

15.

16.

17.

18.

Softwar e

19.

20.

rol e

21.

22.

Carrie J. Cai, Jonas Jongejan, and Jess Holbrook23.

2019. The décts of exampkbased explanations in
a machine learning interface.International
Conference on Intelligent User Interfaces,
Proceedings IUPart F1476: 25862.

Kathleen M Carley. 2017.Discovering and
Mitigating Social Data Bias by Fred Morstatter A
Dissertation Presented in Partial Fulfillment of the
Requirements for the Degree Doctor of Philosophy
Approved June 2017 by the Graduate Supervisory
Committee. Huan Li.u

Francois Chollet and Others. 2015.
Retrieved from https://keras.io.

Michael Chromik and Martin Schuessler. 2020. A
taxonomy for human subject evaluation of black
box explanations in XAl. CEUR Workshop
Proceeding2582, March.

Keras.

17

24,

Chai4gr396403b bar ao

25.

26.

Alex Clark. 2015. Pillow Fork)
Documentation. Retried from
https://buildmedia.readthedocs.org/media/pdf/pillo

w/latest/pillow.pdf.

(PIL

Thomas H. Cormen, Charles E. Leiserson, Ronald
L. Rivest, and Clifford Stein. 200Mtroduction to
Algorithms, Third EditionThe MIT Press.

Bianchi Dy, lbrahim Nazim,Ate Poorthuis, and
Sam Conrad Joyce. 2021. Improving Visualisation
Design for Effective MultiObjective Decision
Making. IEEE Transactions on Visualization and
Computer Graphic2626, c: 112.

Mark Everingham, Luc van Gool, Christopher K.I.
Williams, John Winn, and Andrew Zisserman.
2010. The pascal visual object classes (VOC)
challenge. International Journal of Computer

Vision88, 2: 303338.

Kunihiko Fukushima. 1980. Neocognitron: A self
org&nizihgsneural network model for a mechanism
of pattern recognition unaffected by shift in
position.Biological Cybernetic86, 4: 193202.

Zhenyu Gu, Chenhao Jin, Danny Chang, and Liqun
Zhang. 2021. Predicting webpage aesthetics with
heatmap entropy.Behaviour and Information
Technology0, 7: 676690.

Charles R Harris, K Jarrod Millman, Stéfan J van
de alt, et al. éOiO rray praogramming , wit
Nlﬁgmﬁ/?vy.l\Fa%rg?S : 91A| § RISIEERI I”h St
John D. Hunter. 2007. Matplotlib: a 2D Graphics
Environment. Computing in  Science and
Engineering9, 3: 90 95.

David Hutchison. 2014. LNCS 8406 - Traffic
Monitoring and Analysis.

Tiffany Hwu, Mia Levy, Steven Skorheim, and
David Huber. Matching Representations of
Explainable Artificial Intelligence and Eye Gaze for
HumanMachine Interaction; Matching
Representations of Exptable  Artificial
Intelligence and Eye Gaze for HumBtachine
Interaction .

Ankur Joshi, Saket Kale, Satish Chandel, and D.
Pal. 2015. Likert Scale: Explored and Explained.
British Journal of Applied Science & Technology
Kam

Kaggle. 2020. State of Machine Learning and Data
Science 2020.1130.

Toshihiro Kamishima Shotaro Akaho, Hideki
Asoh, and Jun Sakuma. 2012. Considerations on
fairnessaware data miningProceedings- 12th
IEEE International Conference on Data Mining
Workshops, ICDMW 201378 385.



27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Jae Yeon Kim, Carlos Ortiz, Sarah Nam, Sarah
Santiago, andVivek Datta. 2020. Intersectional
Bias in Hate Speech and Abusive Language
Datasets. . 40

Jonghong Kim, O. Sangjun, Yoonnyun Kim, and
Minho Lee. 2016. Convolutional Neural Network
with  Biologically Inspired Retinal Structure.
Procedia Computer Scien&8; 145 154.

Maximilian  Kohlbrenner, Alexander Bauer,
Shinichi Nakajima, Alexander Binder, Wojciech
Samek, and Sebastian Lapuschkin. 2020. Towards
Best Practice in Explaining Neural Network

41.

Decisions with LRP. Proceedings of the
International Joint Confeence on  Neural
Networks

Joshua A. Kroll, Joanna Huey, Solon Barocas, et al.
2017. Accountable algorithms.University of
Pennsylvania Law Reviel65, 3: 638705.

Yann Lecun, Ledon Bottou
Parick Haffner. 1998. Gradiefased Leming
Applied to Document Recognitioproceedings OF

THE IEEE

43.

David G Low. 2004. Distinctive image features 44.
from scaleinvariant keypoints. International
Journal of Computer Visior91i 110.

Oswaldo Ludwig. Sensitivity to occlusion using
Keras. Ré&ieved August 28, 2021 from
https://github.com/oswaldoludwig/Sensitivitg-
occlusionKeras. 45.

Tamara Munzner. 2014/isualization analysis and
design CRC press.

Alan F Murray. 1995. Applications of Neural

Networks Springer, Boston, MA. 46.

Forough Poursab&angdeh, Daniel G. Goldstein,
and Jake M. Hofman. 2021. Manipulating and
measuring model interpretabilityConference on
Human Factors in Computing Systems

Proceedings ar.

Stephan Raaijmakers. 2019. Artificial Intelligence
for Law  Enfacement. Challenges and
Opportunities.IEEE Security and Privacyl7, 5:

T4 T77. 48.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. A Wh 'y
Explaining the predictions of any classifier.
Proceedings of the ACM SIGKDD Interraial 49
Conference on Knowledge Discovery and Data '
Mining 13-17-Augu: 11351144,

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. FaceNet: A unified embedding for
face recognition and clusterinBroceedings of the

18

IEEE Computer Society Careénce on Computer
Vision and Pattern Recognitiof7-12-June: 815
823.

Mohit Sewak, Md Rezaul Karim, and Pradeep
Pujari. 2018. Practical Convolutional Neural
Networks Packt Publishing.

Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai Weli
Chang, and Vicete Ordonez. 2019. Balanced
datasets are not enough: Estimating and mitigating
gender bias in deep image representations.
Proceedings of the IEEE International Conference
on Computer Visio2019-Octob: 53095318.

Halbert White. 1980. A Heteroskedadiyei
Consistent Covariance Matrix Estimator and a
Direct Test for Heteroskedasticitfeconometrica
48, 4: 817.

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin
Lu, and Thomas S. Huang. 2018. Generative Image
INpainsing with Cahexiugli Atientionaroceledngs

of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognitidbb05
5514.

Matthew D. Zeiler and Rob Fergus. 2014.
Visualizing and Understanding Convolutional
Networks. Lecture Notes in Computer Science
(including subseries Léare Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics)
8689 LNCS, PART 1: 81i833.

Jianlong Zhou, Amir H Gandomi, Fang Chen, and
Andreas Holzinger. 2021. Evaluating the quality of
machine learning explanations: A survey on
methods ad metricsMDPI 10, 5: 1 19.

Jinming Zou, Yi Han, and Sur§au So. 2009.
Overview of Artificial Neural Networks. In D.J.
Livingstone, ed., Artificial Neural Networks:

Methods and ApplicationdHumana Press, Totowa,
NJ, 14 22.

Al adoption in the eterprise 20201 O6 Rei | | y.
Retrieved August 28, 2021 from
https://www.oreilly.com/radar/eadoptionin-the-
enterprise2020/#_ftn1.

Principles for Accountable Algorithms and a Social
| mpact Statement for Al go
Retrieved August 29, 2021 from

s h o thttpd://wwiw.fatnl.orgiresburces/psinciphisr -

accountablalgorithms.

Racial Discrimination in Face Recognition
Technology - Science in the News. Retrieved
August 28, 2021 from
https://sitn.hnms.harvard.edu/flash/2020/racial
discriminationin-facerecognition



technology/?web=1&wdLOR=c6E6594A64A- https://www.nytimes.com/2020/06/24/technology/f
4CD5AA3D-F70C854090DE. acialrecognitionarrest.html.

50. Wrongfully Accused by an Algorithm The New
York Times. Retrieved August 29, 2021 from

APPENDIX

Al. Information Sheet and Consent Form
These were presented at the start of the stRdsticipants could not advance if they did not accept.

Participant Information

Project Title: Interacting with object recognition system

We would like to invite you to participate in this research project directed by researchers at UCL. You should only participate if you want to; choosing not to
take part will not disadvantage you in any way. Before you decide whether you want to take part, it is important for you to read the following information
carefully and discuss it with others if you wish.

Study Details and Compensation.

This study is part of a research project aiming to examine how users interact with smart algorithms. You will ke exploring 2 Machine Learning (ML) system
that have been trained on a set of images. The images will not cantain any offensive, personal, sexual or distasteful matenal.

If you agree to participate, you will be asked to complete a series of computer-based tasks. It is expected that the study will take no longer than 30 mins.

At the end of the activity, as compensation for your time, you will receive £5 plus 10p for each correct answer. Thare are 3 total of 36 questions, so the
maximum you can achieve is £5 + (36%0.1) = £8.6.

There are no particular risks associated with your participation other than those associated with the use of standard computer equipment.

Data and Information

All data will be handled according to the GDPR. Any information that is obtained in connection with this study and that can be identified with you will
remain confidential and will be disclosed only with your permission or as requirad by law. Only UCL researchers working with Dr. Enrico Costanza will have
access to data that can be identified with you.

Data in an aggregated or anonymous form (i.e. not revealing your identity), may instead be made publicly available through scientific publication, ar
otherwise sharaed with other researchers, as requested also by our funders (the UK Research Council).

The legal basis used to process your personal data will be the performance of 2 task in the public interest. The data controller for this project is University
College London {UCL). The Data Protection Officer is Lee Shailer, he can be contacted at data-protection@ucl.ac.uk

Concerns or Complaints.

Should you have any concern or complaint, you can contact us at any point via email (emma.holliday.19@ucl.ac.uk or e.costanza@uclac.uk). For ethics
queries, you can use the following contact (uclic-ethics@ucl.ac.uk). If you are concerned about how your personal data is being processed, you can contact
the UCL Diata Protection Office at data-protection@ucl.ac.uk If you remain unsatisfied, you may wish to contact the Information Commissioner’s Office (1CO).
Contact details, and detzils of data subject rights, are available on the 1CO website at https:/ico.org.uk/for-organisations/data-protection-reform/overview-
of-the-gdpr/individuals-rights/

Thank you for reading this information sheet and for considering taking part in this research study.

Proceed to Consent Form
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Informed Consent Form

Project Title: Interacting with object recognition system.
Project ID Mo: UCLIC/1817 /017 /5taff Costanza/Mowacka,Yang

This study has been approved by the UCL Interaction Centre {UCLIC) Research Department’s Ethics Chair, Rachel Benedyk.

Contact Details of Investigators.
Principal investigator:

Dr. Enrico Costanza

UCL Gower Street

London WC1E 68T

United Kingdom

+44 (0)20 7679 718

email: e.costanza@ucl.ac.uk

Co-investigator

Emma Holiday

LICL Gower Street

London WCE 6BT

United Kingdom

emazil: emma.holliday. 19@ucl.ac.uk

Participant’s Statement.
| the Participant agree that:

1. | have read the information page (i.e. the previous page);

2. | have been advised of an individual to contact for answers to pertinent questions about the research and my rights as a
participant and whom to contact in the event of any research-related issue.

3. | understand that | am free to withdraw from the study without penalty if | so wish. | understand that | consent to the
processing of my personal information for the purposes of this study only. | understand that any such information will be
treated as strictly confidential and handled in accordance with all protection legislation.

' | consent and agree to the terms {items 1-3) above.

Proceed to Instructions
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A2. Task Instructions and Screening Questions
These were slightly adapted from fwevious study, as described in the paper above, but mostly reuse the implementation by
Ahmed Algaraawet al [3]. These examples shomhat would have been seen for someone in the condition with scores.

page 1

Hello, and thank you very much for participating in this study.

Please read the following instruction carefully. It contains valuable information which will allow you to earn additional rewards during this
study.

One of the successful applications of machine learning (ML) is image recognition. It can be used to assign "labels” of recognized objects to
photos. For this, the ML system has to be "trained” on a large number of photos, which were manually labeled. The set of photos used for
training is called the “training set.”

For this study, we pre-trained a system to recognize 20 different labels. The 20 labels are:

aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, sofa, train and tv
monitor.

So if any of these appear in a phote, the system should recognize them and assign the corresponding label.

So when is the system correct and when is it wrong? For each label, the system calculates a score (from 0 to 1) The score will be higher if the system
is very sure about assigning a label and it will be lower if it is unsure.

Each photo can contain multiple objects. Therefore it could need to be assigned multiple labels. The system will assign all labels which scores are
higher than a predefined threshold.

Please note that ML systems are generally not 100% accurate. They may work well on some photos (hopefully most of them), but make mistakes on
other photos (hopefully just a few of them). It is useful to consider the following 4 outcomes where the system makes mistakes or is correct.

1. The image contains object X (e.g., a cat) and the system correctly recognizes it (hurrah!)
- this is a "true positive” (TP).

2. The image does NOT contain cbject X (e.g. a cat), and the system correctly did not recognize such an object (hurrah!)
- this is a "true negative” (TN).

3. The image contains object X (2.g., a cat), but the system fails to recognize it (cops!)
- this is a “false negative™ (FN).

4. The image does NOT contain object X (2.9, a cat), but the system falsely recognized such an object in the image (oops!)
- this is a “false positive™ (FP).

Looking at some examples for each of the outcomes can reveal which images the system recognizes well and with which images it is struggling. In
this study, we ask you to study such examples and estimate how the system will perform.
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page 3

Your main task is to estimate whether the system can successfully assign a label to several photos. To help you with this, we will show you 12
example photos from the training set that are visually similar to the photo you are currently working on. Concretely you will be shown:

* § photos that are True Positive (TF) examples
* 3 photos that are False Negative (FMN) examples
* 3 photos that are False Positive (FP) examples

Previous

Because each image can contain multiple objects, the system accepts the predicted labels which satisfy the following criterion:

The score of the predicted label has to be higher than a pre-defined threshold.

Please note that each"category” has its own threshold, which is shown as small red lines. See this images as an example:

This is a False Positive (FP)
There is no car in the image.
The system predicted a
score for car which is higher
than the threshold (> 0.2).

22

This is a True Positive (TP).
There is a person In the image.
The system predicted a score

for person which is larger than
the threshold (> 0.4).

This is a False Negative (FN)
There is a bicycle in the image.
The system predicted a score
for bicycle which is lower than
the threshold (< 0.3).

Previous

MNext

Next



Nexuomoxampbimagefmmmtrainhgm
wewilsrmyoumexplmahon

isah p which highlights the
amasofthoimagemmwppod"npndlcﬁon
of a label (here “train”) in Red. The darker the
shade of red, the more that area supports the image(1)
prediction.

The first example, Image(1), is a True Positive
(TP) for the label train. Recall that this means
that the system comectly predicted the label
for the image.

The heatmap highlights some areas in red
that show train tracks.

This means that these areas support the
classification of this image as a train.

Image(2)

The d le, Image(2), is a False
Positive (FP). Rocanrmmum-msmm
system falsely predicted a train, even though
there is no train in the image.

The heatmap highlights some evidence that
supports this erroneous prediction. It
highlights in red some areas that are visually
similar to train tracks.

page 6

Here is what you will see when you are working on your tasks:

Heatmap explanation

First, we will show you

a few examples of

correct decisionsand ————>
mistakes the system

has made

Second, we will ask about

Twe Swrgatrews | vampies bo
a0t mege. tuit ha syetm 1

the features that you think

are important for the label
‘ ) Tosk

W may fnd the

Ignones the shape of the Lan snd iy
lights and wndows Plaase name 2 fowtures you think the system is sensitive to:

ease name 2.3 festures you thenk the system ignores
Third, we will ask you to

predict whether the system

is going 1o assign the correct Based 0 what you have kearmed Hrom Bie examees shom 10 you 40 you Ik the system & gong 1o

label to the image shown PSSO e

below. w O™
1f your prediction is Corect you vain e Mow confident ane you i your snwwer?
additional £0.8. Your confidence dows wxtramely unconfdent  wightly unconldent  slgarily confident

not affect the reward

VOt foutuies 00 you Ik Tis kystem & sensitive 167 What Seaturms 00 you Thisk thve system gromes?

entrenmy contidert
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page 7

For each example we show you the following information

A header, that shows whethor

the examgie is

Before you start the task, please answer the following guestion(s):

(you can refer to the previous pages)

Q: For the given example on the right:

1- Is this a False Negative (FN) example of bicycle?

2- Is this a False Negative (FN) example of motorbike?

Q: For the given example on the right:

O No

O No

Highlights 1n rod the

parts of the image
that support the
assignment of the

label. The darker the
shade, the more that

area supports the

© Yes

O Yes

1- The heatmap explanation suggests that the prediction of ‘car’ is supported by the

presence of a side window

ONo OYes

2- The heatmap explanation suggests that the prediction of ‘car’ is supported by the

presence of the car "roof*

ONo OYes

Ready? The total number of questions is 14.

Remember, for each correct answer, you will receive £0.5 extra !

Please press the button to proceed to the task.
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The prediction
(classification scores):

Previous  Next




A3. Task Examples
Theheatmaps were produced as part of this study and some instructions slightly changed, but the task interface mostly reuses
the implementation by Ahmed Algaraaetial.[3].
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