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ABSTRACT 

Extending existing research in Explainable Artificial 

Intelligence (XAI ), this paper presents a novel explanation 

technique for image classifiers. Based on the heatmap 

paradigm, it combines data from multiple granularities to 

represent different scale features in a single visualisation. 

Occlusion is used to determine the importance of different 

areas to the classification outcome, allowing it to be applied 

to any opaque-box system. Importance data is processed 

using a tree to form a hierarchy between multiple scales, 

and dynamically determine the most appropriate scale for 

each area of the heatmap. This visualisation was evaluated 

through a user study, extending the work of Alqaraawi et al. 

[3], comparing its performance with LRP heatmaps and no 

heatmaps. The user study involved forward prediction of 

classifier outcomes and identifying features for example 

images. Overall, this new visualisation did not provide a 

significant improvement in prediction accuracy (versus no 

heatmaps) but did significantly increase the number of 

features mentioned (versus no heatmaps). It performed 

comparably to LRP heatmaps, indicating that it may have 

the potential to be used in real-world applications. Slight 

differences in the features conveyed between these new 

visualisations and LRP heatmaps indicate that each may be 

more appropriate in certain circumstances. 
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Figure 1: A multi -scale occlusion heatmap produced for an 

image of a cat from the PASCAL dataset [17] 

1. INTRODUCTION 
Machine learning (ML) techniques are being increasingly 

used to solve new problems and enhance Artificial 

Intelligence (AI) systems [25]. Furthermore, AI systems are 

now commonplace in enterprise with only 15% of 

organisations in 2020 not using AI at all [47]. A key 

motivation for ML techniques is their ability to ñlearnò 

from provided data, meaning the exact behaviour does not 

need to be specifically programmed. Furthermore, such ML 

systems may interpret features that are not easily perceived 

by humans. However, concerns have been raised over how 

this obscurity means it is not always clear how a ML 

system makes judgements or why it takes certain actions, 

leading to the rise of research into Explainable AI (XAI). 

While a lack of understanding around how these systems 

work can harm the user experience, given that ML is 

increasingly used in serious applications such as law 

enforcement [37], there can also be very grave societal 

implications if these systems are not understood.  This has 

led to a new area in machine learning research: Fair 

Accountable Transparent Machine Learning (FAT ML) , 

and the concept of Accountable Algorithms [30,48].  

Issues often arise from a lack of comprehensive training 

data, using training data which embodies existing societal 

biases [27] or which has been gathered through a biased 

system [11,26]. A notable example of bias with a societal 

impact is racial bias in ML systems. For example, some 

facial recognition systems can perform worse for people 

with darker skin [7,49]. When used by law enforcement to 

identify potential criminals, these systems are more likely 

to incorrectly identify individuals with darker skin, leading 

MSC HCI -E FINAL  PROJECT REPORT 

Project report submitted in part fulfilment of the requirements for 

the degree of Master of Science (Human-Computer Interaction 

with Ergonomics) in the Faculty of Brain Sciences, University 

College London, 2021. 

 

NOTE BY THE UNIVERSITY  

This project report is submitted as an examination paper. No 

responsibility can be held by London University for the accuracy 

or completeness of the material therein. 
 



 2 

to injustices such as false arrests [50]. While improving 

data gathering processes will also help achieve fairness, 

bias can also exist within the algorithms themselves [41]. 

Thus, explanation techniques can help users identify 

unexpected or unfair behaviour due to either the algorithm 

or dataset. 

This work is focused on explaining ML systems that 

classify image data. Image classification has many 

applications (such as object detection [17], facial 

recognition [39], and handwritten text interpretation [31]) 

which can be utilized in many real-world situations 

(including medical imaging, surveillance, and content-

based image retrieval [1]), making it a widely researched 

area. Its visual nature also provides many opportunities for 

explanation techniques. While there are some well-

established image classification algorithms ï such as 

Convolutional Neural Networks (CNNs) ï the breadth of 

this area, as well as future ML research, may lead to various 

algorithms and classification techniques. As such, this work 

focuses on explanation techniques for opaque-box systems 

where the internal implementation is unknown. 

A crucial concept in image classification, and Computer 

Vision more broadly, is that objects or features (attributes 

that contribute to classification) appear at different scales. 

For example, SIFT (Scale-Invariant Feature Transform), a 

popular object-recognition algorithm before CNNs, 

considers this a fundamental aspect of the algorithm, 

explicitly searching over all possible scales [32]. As such, 

an effective explanation technique for image classification 

systems must cater for varying scales of features or objects. 

While occlusion heatmaps are an existing explanation 

technique for image classification, they currently neglect 

differences in feature scale. Subsequently, this study 

presents a new explanation technique ï multi-scale 

occlusion heatmaps ï that extends existing occlusion 

heatmap techniques to accommodate varying feature scales 

by dynamically combining heatmaps of different 

granularities. An example is shown in Figure 1. 

2. RELATED WORK 

2.1 Heatmaps 

Heatmaps are a simple yet powerful data visualisation that 

express the magnitude of some quantity across a continuous 

space or discrete region. Normally, these magnitudes are 

then represented by colour over the space. Heatmaps are a 

useful visualisation with many applications. Some 

examples include using heatmaps of eye-movement over a 

page to predict successful webpage aesthetics [19], 

representing traffic in datacentres [22], and meteorological 

heatmaps that indicate heat or pressure over a physical 

space. Heatmaps are an effective visualisation for 

conveying data quickly, with one study finding them the 

fastest performing chart in a decision-making task without a 

significant reduction in accuracy [16]. 

This study focuses on discrete 2D heatmaps which can be 

considered as a 2D matrix of values. From here, the term 

ñheatmapò is used to refer to a 2D discrete heatmap. 

There are two main forms of heatmaps: cluster heatmaps 

and spatial heatmaps. With cluster heatmaps, the columns 

and rows represent independent entities, and the cells 

represent their interaction. These can be reordered, usually 

to identify clusters [34], as demonstrated in Figure 2. 

Conversely, spatial heatmaps represent a quantity over a 

fixed space (such as a physical space or image space) and 

so it does not make sense to reorder the matrix. In the case 

of explaining image classifiers, a spatial heatmap is used 

and the fixed space is the image itself. The quantity for each 

region is its importance to the classification. 

 

Figure 2: example of a cluster heatmap in its original form 

(left) and clustered (right) 

However, heatmaps normally have a fixed granularity 

which does not accommodate the fact that features may 

exist at different scales. As such, heatmaps used for this 

purpose are often generated at several granularities. This 

poses an open challenge of how to combine different 

granularities in a way that is clear and accurately portrays 

the contribution of each granularity level. 

2.2 Convolutional Neural Networks 

Artificial neural networks are a common ML technique 

inspired by biological neural networks, such as the human 

brain [46]. They consist of many artificial neurons 

(perceptrons) which take some input values, apply a 

function, and produce an output. Notably, the inputs are 

weighted, and these weights are learned during training 

with example data. Perceptrons are joined together into a 

network so that the outputs of one perceptron are the inputs 

to another. With adequate training, neural networks have 

proved to be an incredibly powerful ML technique with 

many applications [35] and variations designed to better 

suit different tasks. 

One such variation is the Convolutional Neural Network 

(CNN) which is very widely used in image classification 

and inspired by the visual cortex in animals [18,28]. They 

perform better on real-world image data than traditional 

neural networks (multi-layer perceptrons) because they 

retain spatial structure from the underlying image, i.e. that 

nearby pixels are more relevant to each other than those that 

are far apart [40].  

1 2 3 4 5 6 7 8 9 10 6 2 9 4 5 7 3 8 1 10

1 5

2 7

3 3

4 2

5 1

6 8

7 4

8 9

9 10

10 6

 ->



 3 

CNNs have layers that use convolution (a mathematical 

operation that combines functions) which reduces free 

parameters in the network [2]. This allows CNNs to handle 

larger inputs (such as images) more efficiently than 

traditional fully connected neural network structures. 

However, some popular classification systems, such as 

FaceNet [39], do not exclusively use a CNN. Instead, a 

CNN is used to produce an embedding (a lower-

dimensional representation of an image in the form of a 

vector) which is then classified by other ML techniques, 

such as Support Vector Machines (SVMs). So, while CNNs 

are a key algorithm in this space, there is a need for 

explanation techniques which also support other classifier 

systems. 

2.3 LRP heatmaps 

LRP (Layer-wise Relevance Propagation) heatmaps are a 

popular explanation technique for CNN-based classifiers 

[29]. These are generated by propagating the outputs of a 

neural network back to the input layer, capturing the way 

each pixel in the input was processed and how it 

contributed to the output [4]. However, this requires a 

neural-network structure and so cannot be applied to other 

ML techniques or hybrid systems, such as those which use 

SVMs. 

The resulting heatmap can help users identify features and 

improve prediction accuracy of users forecasting a 

classifierôs outcomes [3]. Other studies have also shown 

that LRP heatmaps can identify task-relevant stimuli 

without object segmentation and can be used in 

combination with other techniques to predict human eye 

gaze [23]. 

2.4 Programmatic Occlusion 

A generalised algorithm which can work on any opaque-

box system is programmatic occlusion of the input images 

[44].  In this case, the influence of the area is measured by 

the difference in the classifier outcome between when it is 

present and occluded. This approach is appropriate for 

opaque-box systems as only the input and outputs are 

interacted with; there are no prerequisites for the internal 

structure of the classifier system. These results can be used 

to produce heatmaps which identify the areas of the image 

that caused the most change to the classification outcome 

(confidence). 

An added benefit of a generalised system that doesnôt rely 

on the inner implementation of the classifier is that the user 

doesnôt need to understand the classifier implementation in 

order to understand the explanation. Occlusion also 

somewhat mimics real life, where objects may become fully 

or partially occluded by other objects, making it easier for 

non-expert users to imagine and reason about. 

2.5 User studies in XAI 

While many XAI techniques exist, there are fewer 

examples of user studies evaluating the effectiveness of 

these techniques, particularly regarding image classification 

using complex ML models such as CNNs [3]. However, 

there are promising results from studies with simpler 

classifiers. For example, in a study by Riberio et al., 

showing explanations reduced user trust in an obviously 

biased classifier compared to when there were no 

explanations present [38]. It also led more users to 

determine the correct feature leading to classification and to 

do so with greater certainty. Furthermore, Cai et al. 

explored different types of explanations based on providing 

examples of images known to the classifier. When 

explaining a misclassification to a user, they found that 

normative explanations (which showed examples of what 

the classifier was expecting) were more helpful than 

comparative explanations (which showed examples of what 

the misclassified image resembled instead) [10]. 

While not based on image classification, other user studies 

in the field of XAI  may still provide relevant results. 

Notably, research by Poursabzi-Sangdeh et al. indicates that 

participants were more successful at predicting the outcome 

of the model when there were fewer input features [36]. 

This poses a risk for image classification prediction with 

complex models, as there are many features, some of which 

may not be clearly defined or obvious to human perception.  

Regarding kinds of XAI evaluation, Chromik et al. 

developed a taxonomy of human evaluation techniques for 

explanations of opaque-box ML models [13]. This includes 

defining task types, such as verification, annotation, and 

forward simulation (where participants predict the outcome 

of a system). Furthermore, Zhou et al. found that model-

based and example-based explanations were primarily 

evaluated according to the simplicity of the explanation, 

while attribution-based explanations (those which convey 

the relative importance of different input features) were 

evaluated according to the soundness of an explanation. As 

such, they suggest it is not possible to define a universal set 

of evaluation metrics that can be applied to all explanation 

methods [45].  

However, Bussone at al. found that more comprehensive 

explanations in clinical decision support systems lead to an 

over-reliance on them, even when suggestions were 

incorrect. However, less comprehensive explanation 

techniques led to mistrust of the systemôs reliability [8]. 

This indicates a nuanced relationship between the richness 

and helpfulness of explanations and that caution must be 

taken when using explanation techniques in settings with 

significant consequences. 

3. DESIGN RATIONALE 

The design rationale is presented as a high-level overview 

of how the novel explanation technique works. Further 

technical details, including pseudocode, are discussed in 

Section 4. 

When classifying an image using a machine-learning 

system, such as a CNN, there are certain features which 

contribute to a given classification. For example, tracks 
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may be a feature that influences a classifier to label an 

image as ñtrainò. Occluding parts of this image may remove 

features from the image, affecting the classifierôs outcome 

when applied to the new, occluded image. It may reduce the 

certainty of classification (Figure 3) and even change the 

outcome of classification ï for example, ñtrainò not being a 

suggested label anymore. As such, if the score is reduced, it 

implies that the occluded area was important for 

classification. If the score is not reduced, it implies the area 

is not important for classification. 

 

Figure 3: a sketch illustrating how occlusion can reduce 

classification certainty 

This procedure can be programmatically repeated over 

every part of the image (Figure 4) to comprehensively 

determine which parts of the image affect the classifier (i.e. 

are important to classification), and which do not (i.e. are 

not important to classification). This data can then be used 

to produce a heatmap over the original image (Figure 5). 

 

Figure 4: a sketch illustrating occluding regions in 

programmatic occlusion. Together, these regions would cover 

the entirety of the image. 

 

 

Figure 5: a sketch illustrating an example occlusion heatmap, 

highlighting the areas of the image that are important to 

classification 

However, features in images can exist at many different 

scales; some features may be inherently smaller than others, 

some objects can exist at different sizes, and the object may 

be further away, appearing smaller. This is demonstrated in 

Figure 6. 

 

Figure 6: a sketch illustrating how features can appear at 

different sizes A. between objects, B. within an object 

As such, when creating the heatmaps, it is important to 

consider different occlusion sizes. Normally, this would be 

controlled by a parameter and changed per generated 

heatmap. 

However, it would be beneficial to consider all scale 

features at once, in a single visualisation ï in this study, this 

is defined as the primary aggregation problem. The goal 

is to combine the occlusion heatmap data for multiple 

scales into a single data-structure which can be processed 

into a single heatmap that represents all scale data. This is 

illustrated in Figure 7. 

Figure 7: a sketch illustrating the effect of occlusion size on the 

heatmap: A. large occlusion size, B. small occlusion size, C. 

multi -scale occlusion size, combining A and B. 

A complication with programmatic occlusion is that it 

essentially forms a ñgridò over the image which is arbitrary 

compared to the positions of potential features. Therefore, 

features could be located on an occlusion boundary, in 

which case they are not well distinguished as a complete 

feature and may not be represented in the resulting 

heatmap, as illustrated in Figure 8. To address this, different 

offsets can be used which move the occlusion boundaries, 

potentially providing better coverage of different features. 

Many possible offsets exist and may produce varying 

quality heatmaps. How to aggregate all of these possible 

offsets is defined as the secondary aggregation problem. 
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Figure 8: a sketch illustrating how different  occlusion offsets 

(B and C) can obscure features in the original image (A). In B, 

the eyes do not fall within a single occlusion region. In C, the 

eyes fall within individual occlusion regions, but the nose and 

mouth do not. 

Thus, the ultimate goal is to produce a visualisation that 

optimises across both scale and offset variations to produce 

a single, optimal heatmap for any given image. 

4. TECHNICAL DEVELOPMENT 

The algorithm was developed iteratively, improving and 

refining the implementation as opportunities arose to 

improve either the quality of heatmaps or the computational 

efficiency. The main steps are detailed below. 

The code was written using Python 3.7.7. While it is not 

feasible to mention all libraries used, notable examples 

include Pillow [14] (based on the Python Imaging Library) 

and OpenCV [5] for image processing, Keras [12] for 

machine learning (which is based on TensorFlow), AnyTree 

for the tree data-structure [9], Numpy [20] for mathematical 

operations and data-structures, and Matplotlib [21] for 

creating visualisations (the heatmaps). 

4.1 Image format 

For the purposes of understanding the following algorithm, 

it is useful to know that the image is stored as a 2D array, 

where each value represents a pixel in the image. The 

indices of this 2D array provide the coordinates for the 

image starting at the top left. For example, for a 2D array 

called Image, Image[3,1] would return the pixel in the 

fourth column and second row, as shown in Figure 9. 

 

Figure 9: an example of a 2D array visualised as pixels with 

pixel [3,1] highlighted in yellow. 

The colour for each pixel is represented by a 3-value array. 

This represents RGB values (red, green, blue). For instance, 

a black pixel would be [0, 0, 0]. 

The image can therefore be manipulated by changing these 

pixel colour values. For example, to change a pixel value to 

red, you would replace the existing pixel colour with [255, 

0, 0], as shown in Figure 10. 

 

Figure 10: an example of changing a pixel value from black 

(A) to red (B) shown visually (top) and as code (bottom) 

4.2 Iterative Programmatic Occlusion 

The first step was to implement basic programmatic 

occlusion to create a heatmap. 

Based on an implementation by Ludwig [33], this was 

implemented as a simple iterative pass from left to right, 

top to bottom (Figure 11), with a single, customisable 

occlusion size, e.g. 20 pixels × 20 pixels. 

 

Figure 11: an example image with occlusion areas as per 

programmatic occlusion. There are 16 occlusion areas, and the 

order of occlusion starts from 1. Note that each occlusion area 

covers many pixels. 

In this rudimentary implementation, areas were occluded by 

setting the pixel values to black (RGB [0,0,0]). Once 

occluded, the image was passed through the classifier again 

to obtain a new score (where a reduced score implies an 

important area). These scores were then used to generate a 

heatmap of importance per region for a single occlusion 

size (granularity). This process can be repeated for different 

occlusion sizes to create heatmaps of different granularities. 

Visual representation:

[0,0] [1,0] [2,0] [3,0] [4,0]

[0,1] [1,1] [2,1] [3,1] [4,1]

Code representation:

Image[3,1]

Visual representation:

A

[0,0,0] [0,0,0]

B

[255,0,0] [0,0,0]

[0,0,0] [0,0,0] [0,0,0] [0,0,0]

Code representation:

A B[[[0,0,0],[0,0,0]]

[[0,0,0],[0,0,0]]]

[[[255,0,0],[0,0,0]]

[[0,0,0],[0,0,0]]]

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
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In pseudocode, this would be: 

 

while h < i mage.height :  

    while w < i mage.width :  

        occlude I mage(w, w+occlusion Size, h, h+occlusion Size)  

        w = w + occlusion Size  

    h = h + occlusion Size  

 

4.3 Recursive Programmatic Occlusion 

To facilitate occlusion at multiple scales in a single pass, 

the image was occluded recursively. At each scale, the area 

was divided into quarters. Then each of these areas was also 

divided into quarters, and so on (Figure 12). Again, each of 

these occluded images was passed through the classifier to 

obtain a new score. 

This recursive pattern provided a clear parent-child 

relationship between different sized regions covering the 

same area. This made it much easier to record the 

relationships between regions while processing the image 

for several heatmap granularities at once. 

While this implementation does limit occlusion area 

dimensions to be powers of a half of the original imageôs 

dimensions, as opposed to completely customisable, it 

provides a simple way to divide the image.  

 

Figure 12: an example image with occlusion areas as per 

recursive programmatic occlusion. There are 20 occlusion 

areas, 4 large and 16 small. Note that the small areas are 

contained within the large areas, as highlighted by the yellow 

box. The order of occlusion starts from 1. 

4.4 Using a tree to store occlusion data 

As mentioned above, the recursive occlusion pattern 

encodes a parent-child relationship into the data which 

facilitates the use of a tree data-structure for storing the 

occlusion data. The mapping from occlusion areas to tree is 

shown in Figure 13. 

Trees are a widely used data-structure that encode 

hierarchical relationships. As such, they have a well-

defined vocabulary and many established algorithms for 

parsing and manipulating them (for example pruning or 

balancing) [15]. Encoding the importance data in such a 

universal format may provide many opportunities for 

development outside of the implementation presented here. 

 

Figure 13: the tree structure for the first 12 occlusion areas as 

shown in Figure 12. 

Trees were generated breadth-first, repeatedly generating 

new child nodes based on the leaves of the last pass. For 

continuity, the root node represented the entire image being 

occluded. 

Each node contained the following information: 

- Name (for identification) 

- Pixel coordinate for horizontal start of area 

- Pixel coordinate for horizontal end of area 

- Pixel coordinate for vertical start of area 

- Pixel coordinate for vertical end of area 

- Importance 

- Pointers to parent and child regions 

In this early implementation, importance was simply ρ
ὅὰὥίίὭὪὭὩὶὛὧέὶὩ, reflecting the inverse relationship 

between classifier score and occluded importance. 

The recursion stopped when the max depth was reached, a 

parameter provided by the user at runtime. In pseudocode, 

the creation of the tree can be expressed as: 

 

tree = root  

while depth <= maxDepth:  

    for area  in tree.leaves:  

        area. child1 = occlude I mage(area. top_left)  

        area. child2 = occlude I mage(area. top_right)  

        area. chil d3 = occlude I mage(area. bottom_left)  

        area. child4 = occlude I mage(area. bottom_right)  

    depth = depth + 1  

 

The output of this function was a tree which represented a 

different granularity heatmap at each depth. This solved the 

primary aggregation problem of combining multiple 

scales. 
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4.5 Implementing dynamic granularity 

Given the tree contains all the possible scale heatmaps, the 

next step was to determine which scale to use for each area 

of the heatmap. This was achieved through pruning the tree. 

Pruning was based on two assumptions: 

1. There should be no loss of information 

2. Smaller areas are preferred over larger areas where 

possible 

Assumption 1 was based on concepts from information 

theory [6] where, in this case, information is the importance 

value. As such, given a parent node with four children, the 

children were pruned if the sum of their importance values 

were lower than the parent importance value, as this implies 

that the parent conveyed more information than the 

children. Alternatively, if the sum of the child importance 

values was greater than the parent importance value, the 

children were kept in the tree. This process was repeated 

over every node in the tree so that the remaining leaves 

represented the finest granularity information for each area 

of the whole image.  

 

Figure 14: the results of pruning A. a parent where the 

children have a greater summed importance, B. a parent 

which has a greater importance than the sum of its children. 

Note that the zero importance value is always pruned. 

By assuming a zero importance value for any undefined 

areas, the tree could also be pruned of all nodes with zero or 

near-zero importance values. This generally made the tree 

much sparser which improved computational efficiency. 

Examples of pruning are shown in Figure 14. In 

pseudocode, the pruning rule is defined as: 

 

for parent in tree:  

    if (parentImportance > sum(childImportance)):  

        pruneChildren(parent)  

 

4.6 Converting the Tree to a Heatmap 

To convert the tree to a heatmap, first a blank heatmap (2D 

matrix) matching the size of the original image was created. 

A single pass was done over all the leaves of the pruned 

tree. As each node contained its horizontal and vertical 

boundaries and its importance score, the corresponding 

section of the blank heatmap could be updated with the 

importance score, as demonstrated in Figure 15. Repeated 

over all leaves, this produces the data for the full heatmap, 

representing the entire image. 

 

Figure 15: example heatmap data and its corresponding leaf 

nodes 

The heatmap data was converted to the visualisation by 

mapping a colour scale to importance values. In this 

implementation, Matplotlibôs ñRedsò colour scale was used 

to indicate importance as this is consistent with how red is 

used in LRP heatmaps. Each area in the heatmap then 

adopts a colour based on its magnitude and this is overlaid 

on top of the original image for ease of interpretation 

(Figure 16). 

 

Figure 16: example heatmap data and the corresponding final 

heatmap visualisation overlaid onto the original image 

4.7 Refining Occlusion Colour 

In early tests, using black (RGB [0, 0, 0]) to occlude areas 

caused unexpected behaviour from the classifier which 

made subsequent heatmaps unintelligible. One hypothesis is 

that this occlusion colour led to stark contrast boundaries 

which meant the occluded area was interpreted as a new 

feature, as opposed to the lack of any features. 

At first, the fill colour was taken as the average colour of 

the occluded pixels, but this could still lead to harsh 

contrast boundaries or discontinuities in the image if there 

was a distinctive colour within this area. 

As such, the final implementation used the average colour 

of neighbouring pixels (one pixel deep outside of the given 

region on all four sides, as shown in Figure 17). This would 

more effectively ñeraseò the contents of region and keep 

improve continuity with the original image. 
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Figure 17: neighbouring pixels (yellow) for a given occlusion 

area (grey) 

More sophisticated infilling techniques, such as generative 

inpainting [43], exist but using them was outside the scope 

of this work. 

4.8 Refining the Importance Heuristic 

Originally, importance was determined by an overly simple 

heuristic: ὍάὴέὶὸὥὲὧὩρ ὅὰὥίίὭὪὭὩὶὛὧέὶὩ. However, 

this incorrectly assumed that the original image had a 

classification score close to 1. If the original (un-occluded) 

image had a low classification score, importance would 

always be high. As such, the heuristic was refined to make 

it relative to classification score of the original image: 

ὍάὴέὶὸὥὲὧὩ ЎὅὰὥίίὭὪὭὩὶὛὧέὶὩ
 ὕὶὭὫὭὲὥὰὅὰὥίίὭὪὭὩὶὛὧέὶὩὕὧὧὰόὨὩὨὅὰὥίίὭὪὭὩὶὛὧέὶὩ. 

This allowed the system to be more robust in the case that 

the original image was not confidently classified. 

4.9 Offset 

As explained in Section 3, when splitting the image into 

areas for the purpose of a heatmap, the positions of areas 

are arbitrary with regards to the image content, and this can 

cause issues when trying to distinguish features. 

In the iterative implementation, this was overcome by stride 

which can be set as a separate parameter. The stride is how 

far the occluding area moves each time. In the basic 

implementation without offset, the stride would equal the 

width/height of the occluding area. However, when the 

stride is smaller than the area, the occlusion area overlaps 

with its previous positions. This allows alternate region 

boundaries to be checked. However, as the tree-based 

implementation uses recursive area division, stride in this 

sense was not an option. Instead, a global offset was applied 

to the entire heatmap-making process, and this was repeated 

for different offsets. Originally four offsets were considered 

based on the size of the occlusion area at depth 1 (a quarter 

of the original image). As shown in Figure 18, these were:  

- no offset 

- half-width offset 

- half-height offset 

- both half-width and half-height offset 

 

 

Figure 18: the four offset conditions showing the occlusion 

numbered occlusion areas: A. no offset, B. half-width 

horizontal offset, C. half-height horizontal offset, D. both half-

width and half-height offset. The dotted lines indicate the 

theoretical regions while the solid lines indicate the final 

occlusion regions, after cropping. 

This offset pattern was repeated recursively at all scales in 

the tree, While the ñno offsetò condition always created 

four children (Figure 18A), the single direction and bi-

direction offsets created six (Figure 18B, 18C) or nine 

(Figure 18D) children respectively. With offset, children 

can fall partly or completely outside of the original bounds. 

As such, regions were cropped to remain within parent 

regions and within the bounds of the original image. These 

changes required several refinements to the algorithm for 

robustness against negative image coordinates as well as 

more complex logic to determine how many children to 

produce. When pruning the tree, all children were 

considered as contributing to the sum equally. Once 

created, these four heatmaps were combined through a 

simple average, taking the mean pixel value across 

heatmaps. 

However, it quickly became apparent this method was not 

sufficient. As both the original occlusion area and offset 

were based on halves, after the first depth, all regions 

aligned perfectly as before offset. This meant that if a 

feature existed on the boundary of a smaller scale, it would 

still not be accounted for. 

4.10 Refined Offset 

To improve the offset implementation such that all scales 

had some offset variation, the offset value was set to half 

the size of the smallest scale occlusion area. For example, if 

the smallest occlusion area was 10 pixels wide, the offset 

would be 5 pixels. Then, to ensure that all possible offsets 

were considered, the heatmap was offset by multiples of 
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this value, up until the size of the largest region (half the 

image width) at which point the offsets would repeat, as 

shown in Figure 19. Again, all regions were cropped to the 

remain within the parent region and the image boundaries. 

 

Figure 19: an example of occlusion areas with horizontal offset 

as per the refined algorithm. Note how A and E are effectively 

the same. The dotted lines indicate the theoretical regions 

while the solid lines indicate the final occlusion regions, after 

cropping. 

As an example, if an imageôs largest occlusion area was 40 

pixels and its smallest occlusion area was 10 pixels, there 

would be offsets at 5 pixels, 10 pixels, é, 30 pixels, and 35 

pixels. These offsets needed to be applied both horizontally 

and vertically. To cover all possible offsets, every single 

combination of horizontal and vertical offsets had to be 

considered, creating a potential heatmap for each one. This 

drastically increased the number of heatmaps created, given 

by: 
 

 . For an image with 

dimension 80 pixels × 80 pixels, the largest occlusion area 

would be 40 pixels × 40 pixels. At depth 3, the smallest 

occlusion area would be 10 pixels × 10 pixels, giving a 5-

pixel offset.  Thus, to generate all possible offsets would 

require   φτ heatmaps. 

At first, all heatmaps were combined by taking the mean 

value for each area across all heatmaps. However, this 

resulted in visualisations with a smooth blur (shown in 

Figure 20), akin to a Gaussian blur, from averaging across 

so many different heatmaps. This negated the value of the 

multi-granularity heatmaps which were meant to be more 

specific. As such, though this solved the secondary 

aggregation problem of combining all offsets, the 

algorithm was refined further. 

   

Figure 20: a heatmap generated for an image of a train  from 

the PASCAL dataset [17], showing the blurry output of 

combining all offset heatmaps. It consists of 256 combined 

heatmaps with a max depth of 5. 

4.11 Choosing the ñBestò Offset 

As combining all heatmaps through an average was 

problematic, rather than trying to combine the information 

from all heatmaps, the algorithm could instead try to find 

the ñbestò heatmap from the range of all possible heatmaps. 

However, this required a heuristic for determining the 

ñbestò heatmap. 

First, an adversarial approach was considered in which the 

entire heatmap would be used as an occlusion mask over 

the original image. This would then be classified again to 

achieve another score. Similar to occlusion for individual 

regions, the idea was that the more classifier confidence 

was reduced, the better the occlusion, and therefore the 

heatmap. However, this was inefficient, requiring further 

image processing, and relied on a possibly incorrect 

assumption that the best overall heatmap for explaining 

features would cause the greatest performance degradation 

in the classifier. 

Instead, it was more computationally efficient and more 

logically sound to compare trees directly. Inspired by the 

concept of information density [6], a heuristic was 

developed that calculated a linear combination of all leaf 

importance scores (activation), divided by the total area 
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covered by these areas (coverage). This gave a value of 

importance per area, where the ñbestò heatmap was defined 

as the one which conveyed the most importance in the least 

area (i.e. the most information-dense). This favoured 

heatmaps with finer granularity. Note, this method worked 

because zero and near-zero importance nodes were pruned 

from the tree, otherwise the total area would always equal 

the whole image. As the various offset heatmaps were 

created, the best heatmap was stored. It was overwritten 

when a new heatmap achieved a better heuristic score. An 

example output is shown in Figure 21. 

 

Figure 21: a heatmap generated for the same image of a train  

as Figure 20, taking the single ñbestò offset heatmap 

4.12 A Combination of Methods 

The above worked well but there was some concern that 

there could be several useful offsets that capture different 

features. As such, combining the two methods from 4.10 

and 4.11 offered a beneficial compromise. The algorithm 

was adapted such that an additional parameter could be 

provided: the number of heatmaps to combine, ὔ. 

Instead of storing only the best heatmap, the best ὔ  

heatmaps would be stored and combined by taking the 

average. This allows for flexibility between the other two 

options as in the case ὔ ρ, it provides the ñbestò heatmap 

as above while ὔ άὥὼὭάόά (e.g. 64, as in the previous 

example) provides the outcome of combining every 

possible heatmap. This provided a user-customisable 

balance between representing several offsets while retaining 

the value of the multi-scale heatmap by keeping smaller, 

more specific, regions discernible. An example output is 

shown in Figure 22. 

However, this implementation still involved generating 

every possible heatmap which is very computationally 

intensive. To optimise this code, future work would involve 

parallelising the code or identifying which offsets are most 

beneficial to generate, before generating them. 

 

Figure 22: a heatmap generated for the same image of a train  

as Figure 20, combined from the ñbestò 5 offset heatmaps with 

a max depth of 5 

5. USER TESTING 

To test the effectiveness of this visualisation, a user study 

was performed. To obtain results that could be compared to 

other visualisations, this study extended the work done by 

Alqaraawi [3] with LRP heatmaps, using the same study 

protocol, classification images, and user interface. A 

comparison of multi-scale occlusion heatmaps and LRP 

heatmaps is shown in Figure 23. The general pattern of this 

study is forward simulation ï participants are shown 

example classifications and then asked to predict the 

classification for a new image [13]. 

Due to the timing and budget constraints of this being a 

MSc project, this study extends the previous study rather 

than replicating it. As such, this study collects data for two 

additional conditions which are added to the data for the 

four conditions of the original study. 

 

Figure 23: A. a sample image from the PASCAL dataset [17], 

B. the multi -scale occlusion heatmap for this image, C. the 

LRP heatmap for this image 

5.1 Participants 

32 participants were recruited through the academic 

crowdsourcing community Prolific Academic 1for greater 

consistency with Alqaraawi et al.ôs study. Participants had 

to be at least 18 years old with normal or corrected to 

normal vision and required a technical background (such as 

a degree in computing or engineering). Participants also 

needed to be fluent in English, have a Prolific Academic 

approval rate above 95% and be able to complete the task 

using a laptop. The participants were split evenly between 

two conditions, resulting in 16 participants per condition. 

 
1 https://prolific.co/ 
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This extends the original study which had 64 participants 

across 4 conditions (16 per condition). When combined, 

this gives a total of 96 participants across 6 conditions. 

5.2 Design 

This study had a single factor (classification scores) with 

two conditions (scores shown, scores not shown). In this 

study the multi-scale occlusion heatmaps were always 

shown as the control condition was provided from the 

previous study. When combined with the previous study, 

there were 6 conditions in total, as shown in Table 1. 

 Condition Heatmap Scores 

This 

study 

1 Multi -scale 

occlusion 

Shown 

2 Multi -scale 

occlusion 

Not shown 

Previous 

study 

3 LRP Shown 

4 LRP Not shown 

5 No heatmap Shown 

6 No heatmap Not shown 

Table 1: factors and conditions across this study and the 

previous study [3] which it extends 

Note that in all conditions, participants are shown examples 

of images that classify as true positive, false positive, and 

false negative.  

Conditions were between-subjects to avoid learning effects 

that could occur if they repeated the activity in a second 

condition. Participants were randomly assigned to a 

condition. 

5.3 Materials 

5.3.1 Dataset and CNN architecture 

To generate example heatmaps, a classification system and 

dataset were required. As in Alqaraawi et al.ôs study [3], the 

dataset used was the PASCAL Visual Object Classes 

dataset (2008) which contains images across 20 different 

classes. The PASCAL Visual Object Classes challenge 

provides a benchmark in visual object category recognition 

and detection [17]. In this study, the same CNN architecture 

and weights of the trained model were used to ensure 

consistent results between the two studies. This CNN was a 

pre-trained Keras model (trained on ImageNet) using the 

VGG16 architecture which was then fine-tuned on the 

PASCAL dataset. Notably, this CNN was purposely trained 

to not reach state-of-the-art performance to explore how 

visualisations may help understanding both strengths and 

weaknesses in a model. The average precision of the CNN 

was 0.91 on the training set and 0.73 on the validation set. 

As the intention is not to test the accuracy of the classifier 

on new data but to understand how it interprets known data, 

images were taken from the training set for heatmap 

generation. As in the previous study, only the classes ñcatò 

and ñhorseò were used for simplicity. 

Regarding algorithm parameters, the heatmaps were 

generated using a maximum depth of 4 and the best 5 

heatmaps were combined. In contrast to the technical 

development above, the occlusion area was filled with grey 

(RGB [169, 169, 169]) instead of using the neighbouring-

pixel technique. This was to ensure consistency with 

another concurrent study which was ultimately not used in 

future comparisons. 

5.3.2 Study interface 

The study interface is the same as the previous study, a web 

interface built using HTML5, CSS, Python and Django. 

The LRP heatmaps were replaced with the multi-scale 

occlusion heatmaps and relevant instructions were updated. 

Changes to the instructions were kept as minimal as 

possible for consistency, but necessary changes were made 

to explain the new heatmaps and fix typographical errors or 

accessibility issues like low colour contrast. 

5.4 Procedure 

Participants were first asked to give informed consent. They 

were then shown a short set of instructions which included 

information about the study, how to receive higher financial 

rewards, how to use the interface, and an explanation of 

classification outcomes (true positive, true negative, false 

positive, and false negative). Participants in the ñscores 

shownò condition were then shown an explanation for this 

visualisation. All participants were then shown instructions 

that explained what the heatmap visualisation was and how 

to interpret it (that darker red meant the area greater 

supported the given prediction). Next, participants were 

shown examples of a task and asked to complete some short 

questions to demonstrate whether they had understood the 

instructions. 

Upon completion of this step, the participants began the 

main study, comprising of 14 tasks. The task structure is 

explained below. 

Following the completion of the tasks, participants self-

reported which information they had found useful during 

the task (outcomes (e.g., true positive), the heatmaps, the 

classification scores) and what they had learned. They were 

also provided with feedback on their answers, as a score out 

of 14, and their subsequent reward amount. Further down 

the page, participants could view their answers and the 

correct answers for each of the 14 images. 

Participants were paid £8 for participation with an 

additional £0.50 for each correct answer. 

5.4.1 Task Structure 

During a task, the participant is shown 12 example images 

(6 true positive, 3 false positive and 3 false negative) of the 

given class, ñcatò or ñhorseò. An example of how this was 

displayed is shown in Figure 24. In each case, they see the 

original image and the multi-scale occlusion heatmap. If 
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they are in the ñscores shownò condition, they will also see 

the classification scores for each image as a bar chart. To 

counterbalance any learned effects, half of participants first 

saw the images of cats while half began with images of 

horses. 

 

Figure 24: an example of how images, heatmaps and 

classification outcomes were shown to participants. In the 

condition without scores, users saw the same interface except 

that the score graph was missing. 

Following this, participants were shown a new image 

without any heatmap or score data. Participants were asked 

to list any features they thought the classifier was sensitive 

to and any it ignored. They were then asked if  the image 

would be classified as containing the given class, e.g. 

ñhorseò, and to rate their confidence in their answer using a 

4-point Likert Scale [24] from ñextremely unconfidentò to 

ñextremely confidentò. 

The task images used were the same as in the previous 

study. In the previous study, these were selected as they had 

a ñmid-rangeò classification score which, in pilot studies, 

provided a good balance of difficulty for prediction [3]. 

6. RESULTS 

As this study extends the work of Alqaraawi et al. [3] 

through an additional heatmap condition, the data gathered 

in the user study above was combined with the data from 

the original study and processed again in aggregate. Where 

appropriate, the same analysis as in the previous study was 

performed so that direct comparisons could be made 

between the two. Due to the additional heatmap condition, 

post-hoc tests were required. All statistical tests rejected the 

null hypothesis at the significance level 0.05.  

6.1 Outcome prediction accuracy 

This metric measures the ability of participants to correctly 

predict the classification outcome of an image when passed 

through the CNN. For example, a participant correctly 

predicts that an image will be classified as containing a 

horse. As in the previous study, participant performance 

was assessed based on the proportion of correct predictions 

per participant. The results of prediction accuracy are 

summarised in Figure 25. 

A Shapiro-Wilk test confirmed that this prediction accuracy 

was approximately normally distributed (W=0.964, 

p<0.01). A Leveneôs Test showed performance variances 

between groups were similar (F(5,90)=0.882, p=0.497). 

Following this, a two-way independent ANOVA was 

performed which identified that there were no significant 

main effects of heatmap (F(2,90)=3.067, p=0.051) or scores 

(F(1,90)=0.002, p=0.964). Similarly, there were no interaction 

effects (F(2, 90)=2.656, p=0.076). 

The average percent of correct forecasts were also 

calculated per task type (true positive, false positive, and 

false negative). Accuracy was highest for true positive 

images at 77.2%. False positive tasks remained lower with 

44.2% accuracy and lower still for false negative tasks with 

only 38.5% correctly predicted. 

 

Figure 25: The average fraction of correct forecasts per 

participant in each condition. Neither heatmaps (left) nor 

scores (right) significantly impacted prediction performance. 

Overall, these values indicate the same findings from the 

previous study that this is generally a challenging task, 

particularly for false negative and false positive 

identifications where participant performance is worse than 

random chance. 

6.2 Confidence 

As well as predicting the outcome, participants were asked 

to self-report their confidence that their answer was correct. 

The Likert values of extremely unconfident, slightly 

unconfident, slightly confident, and extremely confident 

were mapped to values 1 to 4 respectively, for numerical 

analysis. Consistent with the previous study, the median 

was 3, corresponding to the slightly confident response. A 

Kruskal-Wallis test showed that confidence did not vary 

significantly between different heatmap conditions 

(H(5)=3.178, p=0.673). 

6.3 Mentioned Features 

As well as predicting the classification outcome and 

indicating their confidence levels, participants were also 

asked to indicate which features they thought the classifier 

was sensitive to (i.e., contributed to classification) and 

which features the classifier ignored (i.e. did not contribute 

to classification). These answers were given through free 

text to allow for any possible answer and to avoid priming 

participants by providing suggestions. 

6.3.1 Excluded Data 

No participants from our new dataset were excluded. One 

response from one participant was missing due to a 
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technical fault. However, two excluded participants from 

the original dataset continued to be excluded at this stage, 

as their answers indicated they had misunderstood the task. 

Furthermore, in the previous study, information on the 

ignored features was not used due to misinterpretation of 

the question by many of the participants. As such, this 

question was still asked during the new study for 

consistency (in case it changed the way participants 

approached the task) but was not analysed. 

6.3.2 Analysis approach 

A deductive (top-down) approach to coding was adopted, 

using the codebook from the previous study. Due to the 

nature of the study, the responses were only analysed by a 

single researcher, though in a larger-scale study multiple 

coders would be preferred in order to measure inter-rater 

reliability. The previous dataset had both raw and coded 

answers available which was used to ensure consistency 

when coding the new data. 

These codes belong to two groups saliency-features and 

general-attributes. Saliency-features are codes that relate to 

localised features within the image and can therefore be 

represented through a heatmap. Examples codes include 

eyes and legs. Conversely, general-attributes refer to 

features which are properties of the whole image. Example 

codes include image quality or background. In the previous 

study, the codes were separated this way to compare the 

localised features that heatmaps may have highlighted 

(saliency-features) to more general ones that heatmaps 

would not have highlighted (general-attributes).  

Though mostly deductive, one new code, neck, was added 

inductively as it appeared 17 times across multiple 

participants in the new data. As such, it was deemed 

significant enough it should be a separate code. There were 

2 responses including neck in the previous dataset which 

were updated to reflect this new code. Neck was considered 

a saliency-feature. 

6.3.3 Analysis results 

As per the previous study, to accommodate the fact that 

usual answer length (total number of features mentioned) 

tended to vary by participant, the saliency-features ratio is 

considered for analysis. This is the ratio of saliency-

features to general-attribute features, obtained by dividing 

the number of mentioned saliency-feature codes by the 

number of all saliency-feature and general-attribute codes 

identified from their response. A value greater than 0.5 

indicates that most features mentioned were saliency-

features. 

A Shapiro-Wilk test showed that the saliency-features ratio 

between groups were not normally distributed (W=0.916, 

p<0.01). A Leveneôs test showed there were statistically 

significant differences between groups (F(5,88)=3.056, 

p=0.014). To account for the non-normal distribution, a 

white-corrected coefficient covariance matrix [42] was used 

in a two-way independent measures ANOVA, as in the 

previous study. This revealed a significant main effect of 

heatmaps on the saliency-feature ratio (F(2,88)=12.340, 

p<0.01). There was no significant main effect of showing 

the scores (F(1,88)=0.788, p=0.380) and no interaction effect 

(F(2,88)=0.332, p=0.719). 

A post-hoc Tukey Test indicated significant differences 

between both the ñno heatmapsò and ñmulti-scale 

occlusionò conditions (p=0.014) and ñno heatmapsò and 

ñLRPò conditions (p<0.01). There was no significant 

difference between the ñmulti-scale occlusionò and ñLRPò 

conditions (p=0.068). As participants had higher saliency-

feature ratios in the LRP (µ=0.840, ů=0.154) and occlusion 

(µ=0.711, ů=0.218) conditions, this suggests that both LRP 

heatmaps and multi-scale occlusion heatmaps encouraged 

participants to mention more saliency-features than when 

no heatmap was present (µ=0.546, ů=0.284). This data is 

summarised in Figure 26. 

 

Figure 26: The average participant saliency-features ratio for 

each condition. Both LRP heatmaps and multi -scale occlusion 

heatmaps lead to a significant increase compared to no 

heatmaps (left). Scores had no significant effect on saliency-

features ratio  (right) . 

To further analyse mentioned features, the percentage of 

responses containing each code was calculated. This 

normalises the frequency across codes and conditions, 

allowing for direct comparison. The results for cats are 

summarised in Figure 27 and the results for horses are 

summarised in Figure 28. Overall, the multi-scale occlusion 

heatmaps seemed to follow a similar trend to the LRP 

heatmaps in terms of which features they encouraged 

participants to mention the most. However, the multi-scale 

occlusion heatmaps seemed to consistently encourage more 

general-attribute features to be mentioned compared to the 

LPR heatmaps. Additionally, among saliency-features, 

there are some examples where more general features are 

favoured over more specific ones. For example, the face 

feature was mentioned more with multi-scale occlusion 

heatmaps than LRP heatmaps for both cats and horses. 

More specific facial features ï such as eyes, ears, and nose 

for cat and mouth and nose for horse ï were mentioned 

more with LRP heatmaps. 
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Figure 27: the percentage of cat responses containing the different saliency-features (top) and general-attributes (bottom) for the 

different heatmap conditions LRP heatmaps, multi -scale occlusion heatmaps and no heatmaps 

 

 

Figure 28: the percentage of horse responses containing the different saliency-features (top) and general-attributes (bottom) for the 

different heatmap conditions LRP heatmaps, multi -scale occlusion heatmaps and no heatmaps.
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7. DISCUSSION 

Overall, versus no heatmap, multi-scale occlusion heatmaps 

did not lead to a significant improvement in prediction 

accuracy but did elicit a higher ratio of mentioned saliency-

features. These results indicate that multi-scale occlusion 

heatmaps have the potential to highlight important features 

to users but require additional refinement in order to 

achieve a significant improvement in prediction accuracy. 

Specific metrics are discussed in detail below. 

7.1 Outcome Prediction Accuracy 

Neither multi-scale occlusion heatmaps nor LRP heatmaps 

were found to significantly increase outcome prediction 

accuracy over the no heatmap condition. 

This differs from the previous study in which the heatmap 

condition did indicate a significant effect on performance 

(F(1,60)=4.191, p=0.045). Namely, that LRP heatmaps led to 

a significant improvement in prediction success. One 

hypothesis for this is because the new data for the multi-

scale occlusion heatmaps had greater variance (ů2=0.0144) 

than the previous conditions (LRP ů2=0.0121, No heatmaps 

ů2=0.0126), it increased the variance within distributions, 

affecting the results of the ANOVA. Overall, this study 

should be replicated with all conditions tested at the same 

time remove any ambiguity in the results. 

 

Figure 29: A boxplot showing the skew of participant accuracy 

per condition for all 14 questions 

The accuracy per task type (true positive, false negative, 

etc.) was also similar to the previous study with true 

positive tasks generally answered more accurately than 

either false negative or false positive tasks. Accuracy rates 

for false negative and false positive tasks remain below 

50%, i.e. worse than random, indicating that this is an 

inherently difficult task. This may be visible in the negative 

skew of boxplots in Figure 29, which suggests that some 

questions were harder than others as very few participants 

scored above 10. Lowered performance in ñfalseò tasks 

may indicate a bias based on personal beliefs about the 

capability of these kinds of technologies, especially as the 

performance of the classifier used in this study is 

intentionally below current industry standards. In this case, 

participants may have answered partly according to their 

internal assumptions as opposed to solely based on the 

visualisations provided. Further research may help establish 

whether this is true.  

7.2 Confidence 

The confidence measures were consistent with the previous 

study, that there were no significant differences in 

confidence between conditions and that the median value 

was ñslightly confidentò. As such, the performance of 

multi-scale occlusion heatmaps is comparable to LRP 

heatmaps in terms of making users feel confident. 

7.3 Mentioned Features 

The presence of multi-scale occlusion heatmaps did lead 

participants to mention significantly more saliency-features 

in images compared to no heatmap, indicating that they did 

help participants interpret features in the image. 

There was a slight trend that responses from multi-scale 

occlusion heatmaps tended to favour general-attributes 

over saliency-features compared with the LRP heatmaps. 

This indicates that the multi-scale occlusion heatmaps may 

have less precision than LRP heatmaps or may favour more 

general features. One hypothesis is that, because LRP is 

pixel-based [4] as opposed to multi-scale occlusion 

heatmaps which are area-based, LRP favours highlighting 

finer details in images. LRP heatmaps may also have a bias 

towards highlighting edges, due to their use of the 

underlying CNN which is often sensitive to edges. This 

may explain why LRP heatmaps led to less general-

attribute features which cannot be localised to a pixel. 

Another notable example of differences in responses 

between heatmap conditions was that more participants 

mentioned ñneckò with the multi-scale occlusion heatmaps 

(17) versus LRP heatmaps (2), leading to a new code being 

introduced. This further supports the idea that different 

heatmaps may promote different features. Further research 

should be completed to explore this further and determine if 

there are statistically significant differences between the 

kinds of codes mentioned based on the heatmap shown. 

The dichotomy of saliency-features and general-attributes 

was inherited from the previous study and defined as 

features that could be localised within a heatmap (saliency-

features) and those which could not (general-attributes). 

This was based on the behaviour of LRP heatmaps which 

are pixel-based and therefore incredibly localised. 

However, multi-scale occlusion heatmaps can have much 

more coverage than LRP heatmaps, including some 

examples where the whole image is returned as equally 

important. In this way, the multi-scale nature of this new 

technique may actually imply the importance of general-

attributes, violating the original basis of the dichotomy and 

how it was defined. In future work, these definitions and 

subsequent metrics would likely be redefined to better 

accommodate the kinds of features each heatmap can 

convey. 
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7.4 Comparisons with LRP 

As LRP heatmaps (currently a popular and widely used 

explanation technique [29]) did not perform significantly 

better than multi-scale occlusion heatmaps regarding 

prediction accuracy or saliency-features ratio, this suggests 

that multi-scale occlusion heatmaps also have the potential 

to be useful in real-world applications. However, further 

research with significant prediction results is needed to 

establish this. 

Given the variations in the qualitative responses, with 

multi-scale occlusion heatmaps seeming to favour more 

general features, there may be different situations where 

one heatmap technique is more appropriate given the nature 

of the underlying image data. Furthermore, multi-scale 

occlusion heatmaps can be applied to any opaque-box 

system while LRP heatmaps require access to the trained 

CNN network. As such, even if LRP heatmaps were to 

perform significantly better, multi-scale occlusion heatmaps 

may still be of use in situations where the underlying 

classification system is unknown or inaccessible. Further 

research could explore the different applications of these 

heatmaps and when each technique is most valuable.  

8. LIMITATIONS AND FUTURE WORK 

8.1 Limitations of the algorithm 

While different scale data was combined within a single 

tree, in future work, it would be valuable to combine the 

different offset data into a single tree as well and process 

this data-structure to establish the optimal heatmap. This 

may allow for more sophisticated methods for finding the 

optimum offset as opposed to aggregating the best ὔ 

heatmaps according to a heuristic. This could allow for a 

more accurate visualisation and a more computationally 

effective implementation. From initial investigation, this 

proved to be a very difficult problem and so could not be 

completed within the scope of this work. An alternative 

algorithm that could make use of such a data-structure 

would involve each smallest-granularity region ñvotingò for 

the parent (offset) it is best represented by. 

Additionally, the infilling implementation ï which provides 

the replacement for the occluded area ï could be improved. 

In the user study, the occluded area was filled with grey to 

ensure consistency with another paper that was eventually 

not used for comparison. However, even the 

implementation using the average of neighbouring pixel 

colours could be refined further. For example, generative 

inpainting techniques [43] could be used that would 

effectively erase the area without adding new artefacts to 

the image. This is important as discontinuities (where the 

colour suddenly changes) may appear to the classification 

system as an edge, being interpreted as the addition of 

something new rather than simply the absence of the 

original feature. 

Furthermore, there are likely opportunities for optimisation 

in the existing algorithm, partly through parallelisation and 

partly through more elegant implementations that were 

outside the scope of this work.  

8.2 Limitations of the user study 

Due to the timing and budget constraints of this being a 

MSc project, it extended a previous study rather than 

replicating it. A serious limitation of this was that the 

control condition (no heatmaps) was not collected at the 

same time as the new data. Instead, the control condition 

was measured roughly 2 years prior to this study as part of 

the original study. Therefore, there may be confounding 

variables related to the passage of time that cannot be 

identified and may have adversely affected the results of the 

study. In future work, to minimise confounding variables, 

the study should be replicated completely, with all 

conditions performed at once. 

There were also some participants that failed the initial 

screening questions involving identifying a false positive/ 

true positive classification for a given example. As this was 

not a basis for excluding participants in the previous study, 

they were not excluded from this study. However, if they 

misunderstood the terminology and the task, it may have 

affected their performance. In total, 8 of 32 participants 

failed one or both of these questions so this may well have 

had a significant impact on the overall results. In future 

work, participants that fail the screening task should be 

removed to eliminate any uncertainty. 

9. CONCLUSION 

This paper presents a novel explanation technique for 

opaque-box image classifiers that accommodates features at 

various scales by encapsulating the data from multiple 

granularities into a single visualisation. 

This technique was evaluated through a user study, 

extending the work of Alqaraawi et al. [3], comparing 

performance with no heatmaps and LRP heatmaps. While 

the multi-scale occlusion heatmaps did not provide a 

significant improvement in prediction accuracy (versus no 

heatmaps), they did lead to significantly more specific 

features being mentioned by participants compared to when 

no heatmap was present. The performance of this new 

technique was comparable to LRP heatmaps which also 

showed no significant improvement in prediction accuracy 

but a significant increase in mentioned specific features. As 

such, this new technique may be a useful addition to the 

growing body of XAI research, particularly as it can be 

applied to any opaque-box system. However, further work 

is required to establish this and to ascertain which situations 

this technique is most appropriate for. 

ACKNOWLEDGEMENTS 

It would not have been possible to complete the work in 

this paper without the help of my supervisor, Enrico 

Costanza, and his PhD student Ahmed Alqaraawi. I am 

incredibly grateful for the time and expertise they have 

shared with me, especially given the exceptional 

circumstances at the time of writing. 



 17 

REFERENCES 

1. Tinku Acharya and Ajoy K Ray. 2005. Image 

Processing: Principles and Applications. . 

2. Hamed Habibi Aghdam and Elnaz Jahani Heravi. 

2017. Guide to Convolutional Neural Networks. 

Springer. 

3. Ahmed Alqaraawi, Martin Schuessler, Philipp 

Weiß, Enrico Costanza, and Nadia Berthouze. 

2020. Evaluating saliency map explanations for 

convolutional neural networks. International 

Conference on Intelligent User Interfaces, 

Proceedings IUI: 275ï285. 

4. Sebastian Bach, Alexander Binder, Grégoire 

Montavon, Frederick Klauschen, Klaus-Robert 

Müller, and Wojciech Samek. 2015. On Pixel-Wise 

Explanations for Non-Linear Classifier Decisions 

by Layer-Wise Relevance Propagation. . 

5. G. Bradski. 2000. The OpenCV Library. Dr. 

Dobbôs Journal of Software Tools. 

6. Leon Brillouin. 2013. Science and Information 

Theory. Courier Corporation. 

7. Joy Buolamwini and Timnit Gebru. 2018. Gender 

Shades: Intersectional Accuracy Disparities in 

Commercial Gender Classification. Proceedings of 

Machine Learning Research 81: 77ï91. 

8. Adrian Bussone, Simone Stumpf, and Dympna 

OôSullivan. 2015. The role of explanations on trust 

and reliance in clinical decision support systems. 

Proceedings - 2015 IEEE International Conference 

on Healthcare Informatics, ICHI 2015: 160ï169. 

9. C0fec0de and Others. Any Python Tree Data ð 

anytree 2.8.0 documentation. Retrieved August 30, 

2021 from https://anytree.readthedocs.io/en/latest/. 

10. Carrie J. Cai, Jonas Jongejan, and Jess Holbrook. 

2019. The effects of example-based explanations in 

a machine learning interface. International 

Conference on Intelligent User Interfaces, 

Proceedings IUI Part F1476: 258ï262. 

11. Kathleen M Carley. 2017. Discovering and 

Mitigating Social Data Bias by Fred Morstatter A 

Dissertation Presented in Partial Fulfillment of the 

Requirements for the Degree Doctor of Philosophy 

Approved June 2017 by the Graduate Supervisory 

Committee꜡: Huan Liu , Chair Subbarao Kam. . 

12. Francois Chollet and Others. 2015. Keras. 

Retrieved from https://keras.io. 

13. Michael Chromik and Martin Schuessler. 2020. A 

taxonomy for human subject evaluation of black-

box explanations in XAI. CEUR Workshop 

Proceedings 2582, March. 

14. Alex Clark. 2015. Pillow (PIL Fork) 

Documentation. Retrieved from 

https://buildmedia.readthedocs.org/media/pdf/pillo

w/latest/pillow.pdf. 

15. Thomas H. Cormen, Charles E. Leiserson, Ronald 

L. Rivest, and Clifford Stein. 2009. Introduction to 

Algorithms, Third Edition. The MIT Press. 

16. Bianchi Dy, Ibrahim Nazim, Ate Poorthuis, and 

Sam Conrad Joyce. 2021. Improving Visualisation 

Design for Effective Multi-Objective Decision 

Making. IEEE Transactions on Visualization and 

Computer Graphics 2626, c: 1ï12. 

17. Mark Everingham, Luc van Gool, Christopher K.I. 

Williams, John Winn, and Andrew Zisserman. 

2010. The pascal visual object classes (VOC) 

challenge. International Journal of Computer 

Vision 88, 2: 303ï338. 

18. Kunihiko Fukushima. 1980. Neocognitron: A self-

organizing neural network model for a mechanism 

of pattern recognition unaffected by shift in 

position. Biological Cybernetics 36, 4: 193ï202. 

19. Zhenyu Gu, Chenhao Jin, Danny Chang, and Liqun 

Zhang. 2021. Predicting webpage aesthetics with 

heatmap entropy. Behaviour and Information 

Technology 40, 7: 676ï690. 

20. Charles R Harris, K Jarrod Millman, Stéfan J van 

der Walt, et al. 2020. Array programming with 

NumPy. Nature 585: 357. 

21. John D. Hunter. 2007. Matplotlib: a 2D Graphics 

Environment. Computing in Science and 

Engineering 9, 3: 90ï95. 

22. David Hutchison. 2014. LNCS 8406 - Traffic 

Monitoring and Analysis. . 

23. Tiffany Hwu, Mia Levy, Steven Skorheim, and 

David Huber. Matching Representations of 

Explainable Artificial Intelligence and Eye Gaze for 

Human-Machine Interaction; Matching 

Representations of Explainable Artificial 

Intelligence and Eye Gaze for Human-Machine 

Interaction. . 

24. Ankur Joshi, Saket Kale, Satish Chandel, and D. 

Pal. 2015. Likert Scale: Explored and Explained. 

British Journal of Applied Science & Technology 7, 

4: 396ï403. 

25. Kaggle. 2020. State of Machine Learning and Data 

Science 2020. 1ï30. 

26. Toshihiro Kamishima, Shotaro Akaho, Hideki 

Asoh, and Jun Sakuma. 2012. Considerations on 

fairness-aware data mining. Proceedings - 12th 

IEEE International Conference on Data Mining 

Workshops, ICDMW 2012: 378ï385. 



 18 

27. Jae Yeon Kim, Carlos Ortiz, Sarah Nam, Sarah 

Santiago, and Vivek Datta. 2020. Intersectional 

Bias in Hate Speech and Abusive Language 

Datasets. . 

28. Jonghong Kim, O. Sangjun, Yoonnyun Kim, and 

Minho Lee. 2016. Convolutional Neural Network 

with Biologically Inspired Retinal Structure. 

Procedia Computer Science 88: 145ï154. 

29. Maximilian Kohlbrenner, Alexander Bauer, 

Shinichi Nakajima, Alexander Binder, Wojciech 

Samek, and Sebastian Lapuschkin. 2020. Towards 

Best Practice in Explaining Neural Network 

Decisions with LRP. Proceedings of the 

International Joint Conference on Neural 

Networks. 

30. Joshua A. Kroll, Joanna Huey, Solon Barocas, et al. 

2017. Accountable algorithms. University of 

Pennsylvania Law Review 165, 3: 633ï705. 

31. Yann Lecun, Leôon Bottou, Yoshua Bengio, and 

Parick Haffner. 1998. Gradient-Based Learning 

Applied to Document Recognition. proceedings OF 

THE IEEE. 

32. David G Low. 2004. Distinctive image features 

from scale-invariant keypoints. International 

Journal of Computer Vision: 91ï110. 

33. Oswaldo Ludwig. Sensitivity to occlusion using 

Keras. Retrieved August 28, 2021 from 

https://github.com/oswaldoludwig/Sensitivity-to-

occlusion-Keras-. 

34. Tamara Munzner. 2014. Visualization analysis and 

design. CRC press. 

35. Alan F Murray. 1995. Applications of Neural 

Networks. Springer, Boston, MA. 

36. Forough Poursabzi-Sangdeh, Daniel G. Goldstein, 

and Jake M. Hofman. 2021. Manipulating and 

measuring model interpretability. Conference on 

Human Factors in Computing Systems - 

Proceedings. 

37. Stephan Raaijmakers. 2019. Artificial Intelligence 

for Law Enforcement: Challenges and 

Opportunities. IEEE Security and Privacy 17, 5: 

74ï77. 

38. Marco Tulio Ribeiro, Sameer Singh, and Carlos 

Guestrin. 2016. ñWhy should i trust you?ò 

Explaining the predictions of any classifier. 

Proceedings of the ACM SIGKDD International 

Conference on Knowledge Discovery and Data 

Mining 13-17-Augu: 1135ï1144. 

39. Florian Schroff, Dmitry Kalenichenko, and James 

Philbin. 2015. FaceNet: A unified embedding for 

face recognition and clustering. Proceedings of the 

IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition 07-12-June: 815ï

823. 

40. Mohit Sewak, Md Rezaul Karim, and Pradeep 

Pujari. 2018. Practical Convolutional Neural 

Networks. Packt Publishing. 

41. Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai Wei 

Chang, and Vicente Ordonez. 2019. Balanced 

datasets are not enough: Estimating and mitigating 

gender bias in deep image representations. 

Proceedings of the IEEE International Conference 

on Computer Vision 2019-Octob: 5309ï5318. 

42. Halbert White. 1980. A Heteroskedasticity-

Consistent Covariance Matrix Estimator and a 

Direct Test for Heteroskedasticity. Econometrica 

48, 4: 817. 

43. Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin 

Lu, and Thomas S. Huang. 2018. Generative Image 

Inpainting with Contextual Attention. Proceedings 

of the IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition: 5505ï

5514. 

44. Matthew D. Zeiler and Rob Fergus. 2014. 

Visualizing and Understanding Convolutional 

Networks. Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics) 

8689 LNCS, PART 1: 818ï833. 

45. Jianlong Zhou, Amir H Gandomi, Fang Chen, and 

Andreas Holzinger. 2021. Evaluating the quality of 

machine learning explanations: A survey on 

methods and metrics. MDPI 10, 5: 1ï19. 

46. Jinming Zou, Yi Han, and Sung-Sau So. 2009. 

Overview of Artificial Neural Networks. In D.J. 

Livingstone, ed., Artificial Neural Networks: 

Methods and Applications. Humana Press, Totowa, 

NJ, 14ï22. 

47. AI adoption in the enterprise 2020 ï OôReilly. 

Retrieved August 28, 2021 from 

https://www.oreilly.com/radar/ai-adoption-in-the-

enterprise-2020/#_ftn1. 

48. Principles for Accountable Algorithms and a Social 

Impact Statement for Algorithms :: FAT ML. 

Retrieved August 29, 2021 from 

https://www.fatml.org/resources/principles-for-

accountable-algorithms. 

49. Racial Discrimination in Face Recognition 

Technology - Science in the News. Retrieved 

August 28, 2021 from 

https://sitn.hms.harvard.edu/flash/2020/racial-

discrimination-in-face-recognition-



 19 

technology/?web=1&wdLOR=c6E65949F-164A-

4CD5-AA3D-F70C854090DE. 

50. Wrongfully Accused by an Algorithm - The New 

York Times. Retrieved August 29, 2021 from 

https://www.nytimes.com/2020/06/24/technology/f

acial-recognition-arrest.html. 

  

 

 

APPENDIX 
 

A1. Information Sheet and Consent Form 

These were presented at the start of the study. Participants could not advance if they did not accept. 
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A2. Task Instructions and Screening Questions 

These were slightly adapted from the previous study, as described in the paper above, but mostly reuse the implementation by 

Ahmed Alqaraawi et al. [3]. These examples show what would have been seen for someone in the condition with scores. 
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A3. Task Examples 

The heatmaps were produced as part of this study and some instructions slightly changed, but the task interface mostly reuses 

the implementation by Ahmed Alqaraawi et al. [3].  

 


