Use of a Low-Cost, Chest-Mounted Accelerometer to Evaluate Transfer Skills of Wheelchair Users During Everyday Activities: Observational Study (Preprint)

Giulia Barbareschi, Catherine Holloway, N Bianchi-Berthouze, S Sonenblum, S Sprigle
in Working/Discussion Paper


Transfers are an important skill for many wheelchair users (WU). However, they have also been related to the risk of falling or developing upper limb injuries. Transfer abilities are usually evaluated in clinical settings or biomechanics laboratories, and these methods of assessment are poorly suited to evaluation in real and unconstrained world settings where transfers take place.

                    The objective of this paper is to test the feasibility of a system based on a wearable low-cost sensor to monitor transfer skills in real-world settings.

                    We collected data from 9 WU wearing triaxial accelerometer on their chest while performing transfers to and from car seats and home furniture. We then extracted significant features from accelerometer data based on biomechanical considerations and previous relevant literature and used machine learning algorithms to evaluate the performance of wheelchair transfers and detect their occurrence from a continuous time series of data.

                    Results show a good predictive accuracy of support vector machine classifiers when determining the use of head-hip relationship (75.9%) and smoothness of landing (79.6%) when the starting and ending of the transfer are known. Automatic transfer detection reaches performances that are similar to state of the art in this context (multinomial logistic regression accuracy 87.8%). However, we achieve these results using only a single sensor and collecting data in a more ecological manner.

                    The use of a single chest-placed accelerometer shows good predictive accuracy for algorithms applied independently to both transfer evaluation and monitoring. This points to the opportunity for designing ubiquitous-technology based personalized skill development interventions for WU. However, monitoring transfers still require the use of external inputs or extra sensors to identify the start and end of the transfer, which is needed to perform an accurate evaluation.